Turn off MathJax
Article Contents
Zhang San,Li Si,Wang Wu. Effect of seawater acidification and alkalization on photosynthetic physiology of Thalassiosira punctigera[J]. Haiyang Xuebao,2022, 1(2):31–39
Citation: Zhang San,Li Si,Wang Wu. Effect of seawater acidification and alkalization on photosynthetic physiology of Thalassiosira punctigera[J]. Haiyang Xuebao,2022, 1(2):31–39

Effect of seawater acidification and alkalization on photosynthetic physiology of Thalassiosira punctigera

  • Available Online: 2022-02-24
  • I11111ncreasing atmospheric CO2 concentration leads to ocean acidification, which might affect phytoplankton to varying degrees. Phytoplankton in coastal waters may be affected by seawater acidification and alkalization. In this experiment, Thalassoosira punctigera (diatom) was used to investigate its growth, photosynthesis, dark respiration, cell size, chlorophyll a content, biogenic silica content and chlorophyll fluorescence at seven pCO2 levels (25, 50, 100, 200, 400, 800, 1600 μatm). The results showed that, compared with 400 μatm, the growth rate and chlorophyll a content in seawater acidification (pCO2 > 400 μatm) and alkalization (pCO2 < 400 μatm) treatments were significantly reduced, but the degree of decrease was greater under the condition of alkalization. In addition, cells showed lower photosynthesis rates and maximum quantum yield of PSII (Fv/Fm) and relative maximum electron transport rate (rETRmax) under alkalization conditions. However, there was no significant changes in biogenic silica content and cell size among different pCO2 levels. We found both seawater alkalization and acidification could inhibit the physiological activities of T. punctigera, and seawater alkalization had much more inhibited effects. Our results showed that the cell grown at current pCO2 level (400 μatm) had the optical physiological performance. Moreover, among the pCO2 levels set in this study, seawater alkalization has a more significant effect on T. punctigera. The present study provides a theoretical basis for studying the effects of changing seawater carbonate chemistry on the marine primary productivity in coastal waters.

     

  • loading
  • [1]
    Tréguer P, Brzezinski M A, et al. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Global Biogeochemical Cycles, 1995, 9(3): 359−372. doi: 10.1029/95GB01070
    [2]
    Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374): 237−240. doi: 10.1126/science.281.5374.237
    [3]
    IPCC. Climate Change 2007: The Physical Science Basis[M]. Cambridge, UK: Cambridge University Press, 2007.
    [4]
    Zeebe R E, Wolf-Gladrow D A. CO2 in Seawater: Equilibrium, Kinetics, Isotopes[M]. Oxford: Gulf Professional Publishing, 2001.
    [5]
    Duarte C M, Hendriks I E, Moore T S, et al. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH[J]. Estuaries and Coasts, 2013, 36(2): 221−236. doi: 10.1007/s12237-013-9594-3
    [6]
    Passow U, Carlson C A. The biological pump in a high CO2 world[J]. Marine Ecology Progress Series, 2012, 470: 249−271. doi: 10.3354/meps09985
    [7]
    Pesce M, Critto A, Torresan S, et al. Modelling climate change impacts on nutrients and primary production in coastal waters[J]. Science of the Total Environment, 2018, 628-629: 919−937. doi: 10.1016/j.scitotenv.2018.02.131
    [8]
    Hinga K R. Effects of pH on coastal marine phytoplankton[J]. Marine Ecology Progress Series, 2002, 238: 281−300. doi: 10.3354/meps238281
    [9]
    Brussaard C P D, Gast G J, van Duyl F C, et al. Impact of phytoplankton bloom magnitude on a pelagic microbial food web[J]. Marine Ecology Progress Series, 1996, 144: 211−221. doi: 10.3354/meps144211
    [10]
    Macedo M F, Duarte P, Mendes P, et al. Annual variation of environmental variables, phytoplankton species composition and photosynthetic parameters in a coastal lagoon[J]. Journal of Plankton Research, 2001, 23(7): 719−732. doi: 10.1093/plankt/23.7.719
    [11]
    Hansen P J. Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession[J]. Aquatic Microbial Ecology, 2002, 28(3): 279−288.
    [12]
    Liu H B, Chen M R, Zhu F, et al. Effect of diatom silica content on copepod grazing, growth and reproduction[J]. Frontiers in Marine Science, 2016, 3: 89.
    [13]
    Whitney S M, Sharwood R E, Orr D, et al. Isoleucine 309 acts as a C4 catalytic switch that increases ribulose-1, 5-bisphosphate carboxylase/oxygenase (rubisco) carboxylation rate in Flaveria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(35): 14688−14693. doi: 10.1073/pnas.1109503108
    [14]
    Giordano M, Beardall J, Raven J A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution[J]. Annual Review of Plant Biology, 2005, 56: 99−131. doi: 10.1146/annurev.arplant.56.032604.144052
    [15]
    Trimborn S, Lundholm N, Thoms S, et al. Inorganic carbon acquisition in potentially toxic and non‐toxic diatoms: the effect of pH‐induced changes in seawater carbonate chemistry[J]. Physiologia Plantarum, 2008, 133(1): 92−105. doi: 10.1111/j.1399-3054.2007.01038.x
    [16]
    Burkhardt S, Amoroso G, Riebesell U, et al. CO2 and HCO3- uptake in marine diatoms acclimated to different CO2 concentrations[J]. Limnology and Oceanography, 2001, 46(6): 1378−1391. doi: 10.4319/lo.2001.46.6.1378
    [17]
    Chen Xiongwen, Gao Kunshan. Roles of carbonic anhydrase in photosynthesis of Skeletonema costatum[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(5): 511−516.
    [18]
    Elzenga J T M, Prins H B A, Stefels J. The role of extracellular carbonic anhydrase activity in inorganic carbon utilization of Phaeocystis globosa (Prymnesiophyceae): a comparison with other marine algae using the isotopic disequilibrium technique[J]. Limnology and Oceanography, 2000, 45(2): 372−380. doi: 10.4319/lo.2000.45.2.0372
    [19]
    Gao Kunshan, Campbell D A. Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: a review[J]. Functional Plant Biology, 2014, 41(5): 449−459. doi: 10.1071/FP13247
    [20]
    Mackey K R M, Morris J J, Morel F M M, et al. Response of photosynthesis to ocean acidification[J]. Oceanography, 2015, 28(2): 74−91.
    [21]
    Rokitta S D, John U, Rost B. Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi[J]. PLoS One, 2012, 7(12): e52212. doi: 10.1371/journal.pone.0052212
    [22]
    高坤山. 海洋酸化正负效应: 藻类的生理学响应[J]. 厦门大学学报:自然科学版, 2011, 50(2): 411−417.

    Gao Kunshan. Positive and negative effects of ocean acidification: physiological responses of algae[J]. Journal of Xiamen University: Natural Science, 2011, 50(2): 411−417.
    [23]
    Wang Xianzhong, Lewis J D, Tissue D T, et al. Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(5): 2479−2484. doi: 10.1073/pnas.051622998
    [24]
    Goldman J C, Azov Y, Riley C B, et al. The effect of pH in intensive microalgal cultures. I. Biomass regulation[J]. Journal of Experimental Marine Biology and Ecology,, 1982, 57(1): 1−13. doi: 10.1016/0022-0981(82)90140-X
    [25]
    Bartual A, Gálvez J A. Growth and biochemical composition of the diatom Phaeodactylum tricornutum at different pH and inorganic carbon levels under saturating and subsaturating light regimes[J]. Botanica Marina, 2002, 45(6): 491−501.
    [26]
    Lundholm N, Hansen P J, Kotaki Y. Effect of pH on growth and domoic acid production by potentially toxic diatoms of the genera Pseudo-nitzschia and Nitzschia[J]. Marine Ecology Progress Series, 2004, 273: 1−15. doi: 10.3354/meps273001
    [27]
    Taraldsvik M, MYKLESTAD S. The effect of pH on growth rate, biochemical composition and extracellular carbohydrate production of the marine diatom Skeletonema costatum[J]. European Journal of Phycology, 2000, 35(2): 189−194. doi: 10.1080/09670260010001735781
    [28]
    Raven J A, Gobler C J, Hansen P J. Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: theoretical and observed effects on harmful algal blooms[J]. Harmful Algae, 2019, 91: 101594. doi: 10.1016/j.hal.2019.03.012
    [29]
    Flynn K J, Clark D R, Mitra A, et al. Ocean acidification with (de) eutrophication will alter future phytoplankton growth and succession[J]. Proceedings of the Royal Society B: Biological Sciences, 2015, 282(1804): 20142604. doi: 10.1098/rspb.2014.2604
    [30]
    Wells M L, Trainer V L, Smayda T J, et al. Harmful algal blooms and climate change: learning from the past and present to forecast the future[J]. Harmful Algae, 2015, 49: 68−93. doi: 10.1016/j.hal.2015.07.009
    [31]
    Sunda W G, Price N M, Morel F M M. Trace metal ion buffers and their use in culture studies[J]. Algal Culturing Techniques, 2005, 4: 35−63.
    [32]
    Guillard R R L, Ryther J H. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) gran[J]. Canadian Journal of Microbiology, 1962, 8(2): 229−239. doi: 10.1139/m62-029
    [33]
    Riebesell U, Fabry V J, Hansson L, et al. Guide to Best Practices for Ocean Acidification Research and Data Reporting[M]. Luxembourg: Office for Official Publications of the European Communities, 2011.
    [34]
    Sun Jun, Liu Dongyan. Geometric models for calculating cell biovolume and surface area for phytoplankton[J]. Journal of Plankton Research, 2003, 25(11): 1331−1346. doi: 10.1093/plankt/fbg096
    [35]
    Ritchie R J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents[J]. Photosynthesis Research, 2006, 89(1): 27−41. doi: 10.1007/s11120-006-9065-9
    [36]
    Brzezinski M A, Nelson D M. The annual silica cycle in the Sargasso Sea near Bermuda[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1995, 42(7): 1215−1237. doi: 10.1016/0967-0637(95)93592-3
    [37]
    Wu Yaping, Beardall J, Gao Kunshan. Physiological responses of a model marine diatom to fast pH changes: special implications of coastal water acidification[J]. PLoS One, 2015, 10(10): e0141163. doi: 10.1371/journal.pone.0141163
    [38]
    Jassby A D, Platt T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton[J]. Limnology and Oceanography, 1976, 21(4): 540−547. doi: 10.4319/lo.1976.21.4.0540
    [39]
    陈善文. 赤潮棕囊藻生态生理学研究[D]. 广东: 汕头大学, 2012.

    Chen Shanwen. Ecophysiological studies on the red-tide alga Phaeocystis globose[D]. Guangdong: Shantou University, 2012
    [40]
    Finkel Z V, Beardall J, Flynn K J, et al. Phytoplankton in a changing world: cell size and elemental stoichiometry[J]. Journal of Plankton Research, 2010, 32(1): 119−137. doi: 10.1093/plankt/fbp098
    [41]
    Reinfelder J R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton[J]. Annual Review of Marine Science, 2011, 3: 291−315. doi: 10.1146/annurev-marine-120709-142720
    [42]
    Turley C, Eby M, Ridgwell A J, et al. The societal challenge of ocean acidification[J]. Marine Pollution Bulletin, 2010, 60(6): 787−792. doi: 10.1016/j.marpolbul.2010.05.006
    [43]
    Li Wei, Ding Jiancheng, Li Futian, et al. Functional responses of smaller and larger diatoms to gradual CO2 rise[J]. Science of the Total Environment, 2019, 680: 79−90. doi: 10.1016/j.scitotenv.2019.05.035
    [44]
    Beardall J, Giordano M. Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation[J]. Functional Plant Biology, 2002, 29(3): 335−347. doi: 10.1071/PP01195
    [45]
    Tortell P D, Rau G H, Morel F M M. Inorganic carbon acquisition in coastal Pacific phytoplankton communities[J]. Limnology and Oceanography, 2000, 45(7): 1485−1500. doi: 10.4319/lo.2000.45.7.1485
    [46]
    Passow U, Laws E A. Ocean acidification as one of multiple stressors: growth response of Thalassiosira weissflogii (diatom) under temperature and light stress[J]. Marine Ecology Progress Series, 2015, 541: 75−90. doi: 10.3354/meps11541
    [47]
    Gao Kunshan, Xu Juntian, Gao Guang, et al. Rising CO2 and increased light exposure synergistically reduce marine primary productivity[J]. Nature Climate Change, 2012, 2(7): 519−523. doi: 10.1038/nclimate1507
    [48]
    Li Wei, Yang Yuling, Li Zhenzhen, et al. Effects of seawater acidification on the growth rates of the diatom Thalassiosira (Conticribra) weissflogii under different nutrient, light, and UV radiation regimes[J]. Journal of Applied Phycology, 2017, 29(1): 133−142. doi: 10.1007/s10811-016-0944-y
    [49]
    McMinn A, Müller M N, Martin A, et al. The response of Antarctic sea ice algae to changes in pH and CO2[J]. PLoS One, 2014, 9(1): e86984. doi: 10.1371/journal.pone.0086984
    [50]
    Burkhardt S, Zondervan I, Riebesell U. Effect of CO2 concentration on C: N: P ratio in marine phytoplankton: a species comparison[J]. Limnology and Oceanography, 1999, 44(3): 683−690. doi: 10.4319/lo.1999.44.3.0683
    [51]
    Woodger F J, Badger M R, Price G D. Regulation of cyanobacterial CO2-concentrating mechanisms through transcriptional induction of high-affinity Ci-transport systems[J]. Canadian Journal of Botany, 2005, 83(7): 698−710. doi: 10.1139/b05-050
    [52]
    Li Futian, Fan Jiale, Hu Lili, et al. Physiological and biochemical responses of Thalassiosira weissflogii (diatom) to seawater acidification and alkalization[J]. ICES Journal of Marine Science, 2019, 76(6): 1850. doi: 10.1093/icesjms/fsz028
    [53]
    Taucher J, Jones J, James A, et al. Combined effects of CO2 and temperature on carbon uptake and partitioning by the marine diatoms Thalassiosira weissflogii and Dactyliosolen fragilissimus[J]. Limnology and Oceanography, 2015, 60(3): 901−919. doi: 10.1002/lno.10063
    [54]
    Hancock A M, Davidson A T, McKinlay J, et al. Ocean acidification changes the structure of an Antarctic coastal protistan community[J]. Biogeosciences, 2018, 15(8): 2393−2410. doi: 10.5194/bg-15-2393-2018
    [55]
    Wu Yaping, Campbell D A, 111Irwin A J, et al. 111Ocean acidification enhances the growth rate of larger diatom111s[J]. Limnology and111 Oceanography, 2014, 59(3): 1027−1034. doi: 10.4319/lo.2014.59.3.1027
    [56]
    Li Futian, Wu Yaping, Hutchins D A, et al. Physiological responses of coastal and oceanic diatoms to diurnal fluctuations in seawater carbonate chemistry under two CO2 concentrations[J]. Biogeosciences, 2016, 13(22): 6247−6259. doi: 10.5194/bg-13-6247-2016
    [57]
    Hutchins D A, Walworth N G, Webb E A, et al. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide[J]. Nature Communications, 2015, 6(1): 8155. doi: 10.1038/ncomms9155
    [58]
    Tong Shanying, Gao Kunshan, Hutchins D A. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1, 000 generations of selection under elevated CO2[J]. Global Change Biology, 2018, 24(7): 3055−3064. doi: 10.1111/gcb.14065
    [59]
    Li Futian, Beardall J, Collins S, et al. Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO2 over 1800 generations[J]. Global Change Biology, 2017, 23(1): 127−137. doi: 10.1111/gcb.13501
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (142) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return