Citation: | Zhang San,Li Si,Wang Wu. Effect of seawater acidification and alkalization on photosynthetic physiology of Thalassiosira punctigera[J]. Haiyang Xuebao,2022, 1(2):31–39 |
[1] |
Tréguer P, Brzezinski M A, et al. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Global Biogeochemical Cycles, 1995, 9(3): 359−372. doi: 10.1029/95GB01070
|
[2] |
Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374): 237−240. doi: 10.1126/science.281.5374.237
|
[3] |
IPCC. Climate Change 2007: The Physical Science Basis[M]. Cambridge, UK: Cambridge University Press, 2007.
|
[4] |
Zeebe R E, Wolf-Gladrow D A. CO2 in Seawater: Equilibrium, Kinetics, Isotopes[M]. Oxford: Gulf Professional Publishing, 2001.
|
[5] |
Duarte C M, Hendriks I E, Moore T S, et al. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH[J]. Estuaries and Coasts, 2013, 36(2): 221−236. doi: 10.1007/s12237-013-9594-3
|
[6] |
Passow U, Carlson C A. The biological pump in a high CO2 world[J]. Marine Ecology Progress Series, 2012, 470: 249−271. doi: 10.3354/meps09985
|
[7] |
Pesce M, Critto A, Torresan S, et al. Modelling climate change impacts on nutrients and primary production in coastal waters[J]. Science of the Total Environment, 2018, 628-629: 919−937. doi: 10.1016/j.scitotenv.2018.02.131
|
[8] |
Hinga K R. Effects of pH on coastal marine phytoplankton[J]. Marine Ecology Progress Series, 2002, 238: 281−300. doi: 10.3354/meps238281
|
[9] |
Brussaard C P D, Gast G J, van Duyl F C, et al. Impact of phytoplankton bloom magnitude on a pelagic microbial food web[J]. Marine Ecology Progress Series, 1996, 144: 211−221. doi: 10.3354/meps144211
|
[10] |
Macedo M F, Duarte P, Mendes P, et al. Annual variation of environmental variables, phytoplankton species composition and photosynthetic parameters in a coastal lagoon[J]. Journal of Plankton Research, 2001, 23(7): 719−732. doi: 10.1093/plankt/23.7.719
|
[11] |
Hansen P J. Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession[J]. Aquatic Microbial Ecology, 2002, 28(3): 279−288.
|
[12] |
Liu H B, Chen M R, Zhu F, et al. Effect of diatom silica content on copepod grazing, growth and reproduction[J]. Frontiers in Marine Science, 2016, 3: 89.
|
[13] |
Whitney S M, Sharwood R E, Orr D, et al. Isoleucine 309 acts as a C4 catalytic switch that increases ribulose-1, 5-bisphosphate carboxylase/oxygenase (rubisco) carboxylation rate in Flaveria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(35): 14688−14693. doi: 10.1073/pnas.1109503108
|
[14] |
Giordano M, Beardall J, Raven J A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution[J]. Annual Review of Plant Biology, 2005, 56: 99−131. doi: 10.1146/annurev.arplant.56.032604.144052
|
[15] |
Trimborn S, Lundholm N, Thoms S, et al. Inorganic carbon acquisition in potentially toxic and non‐toxic diatoms: the effect of pH‐induced changes in seawater carbonate chemistry[J]. Physiologia Plantarum, 2008, 133(1): 92−105. doi: 10.1111/j.1399-3054.2007.01038.x
|
[16] |
Burkhardt S, Amoroso G, Riebesell U, et al. CO2 and HCO3- uptake in marine diatoms acclimated to different CO2 concentrations[J]. Limnology and Oceanography, 2001, 46(6): 1378−1391. doi: 10.4319/lo.2001.46.6.1378
|
[17] |
Chen Xiongwen, Gao Kunshan. Roles of carbonic anhydrase in photosynthesis of Skeletonema costatum[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(5): 511−516.
|
[18] |
Elzenga J T M, Prins H B A, Stefels J. The role of extracellular carbonic anhydrase activity in inorganic carbon utilization of Phaeocystis globosa (Prymnesiophyceae): a comparison with other marine algae using the isotopic disequilibrium technique[J]. Limnology and Oceanography, 2000, 45(2): 372−380. doi: 10.4319/lo.2000.45.2.0372
|
[19] |
Gao Kunshan, Campbell D A. Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: a review[J]. Functional Plant Biology, 2014, 41(5): 449−459. doi: 10.1071/FP13247
|
[20] |
Mackey K R M, Morris J J, Morel F M M, et al. Response of photosynthesis to ocean acidification[J]. Oceanography, 2015, 28(2): 74−91.
|
[21] |
Rokitta S D, John U, Rost B. Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi[J]. PLoS One, 2012, 7(12): e52212. doi: 10.1371/journal.pone.0052212
|
[22] |
高坤山. 海洋酸化正负效应: 藻类的生理学响应[J]. 厦门大学学报:自然科学版, 2011, 50(2): 411−417.
Gao Kunshan. Positive and negative effects of ocean acidification: physiological responses of algae[J]. Journal of Xiamen University: Natural Science, 2011, 50(2): 411−417.
|
[23] |
Wang Xianzhong, Lewis J D, Tissue D T, et al. Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(5): 2479−2484. doi: 10.1073/pnas.051622998
|
[24] |
Goldman J C, Azov Y, Riley C B, et al. The effect of pH in intensive microalgal cultures. I. Biomass regulation[J]. Journal of Experimental Marine Biology and Ecology,, 1982, 57(1): 1−13. doi: 10.1016/0022-0981(82)90140-X
|
[25] |
Bartual A, Gálvez J A. Growth and biochemical composition of the diatom Phaeodactylum tricornutum at different pH and inorganic carbon levels under saturating and subsaturating light regimes[J]. Botanica Marina, 2002, 45(6): 491−501.
|
[26] |
Lundholm N, Hansen P J, Kotaki Y. Effect of pH on growth and domoic acid production by potentially toxic diatoms of the genera Pseudo-nitzschia and Nitzschia[J]. Marine Ecology Progress Series, 2004, 273: 1−15. doi: 10.3354/meps273001
|
[27] |
Taraldsvik M, MYKLESTAD S. The effect of pH on growth rate, biochemical composition and extracellular carbohydrate production of the marine diatom Skeletonema costatum[J]. European Journal of Phycology, 2000, 35(2): 189−194. doi: 10.1080/09670260010001735781
|
[28] |
Raven J A, Gobler C J, Hansen P J. Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: theoretical and observed effects on harmful algal blooms[J]. Harmful Algae, 2019, 91: 101594. doi: 10.1016/j.hal.2019.03.012
|
[29] |
Flynn K J, Clark D R, Mitra A, et al. Ocean acidification with (de) eutrophication will alter future phytoplankton growth and succession[J]. Proceedings of the Royal Society B: Biological Sciences, 2015, 282(1804): 20142604. doi: 10.1098/rspb.2014.2604
|
[30] |
Wells M L, Trainer V L, Smayda T J, et al. Harmful algal blooms and climate change: learning from the past and present to forecast the future[J]. Harmful Algae, 2015, 49: 68−93. doi: 10.1016/j.hal.2015.07.009
|
[31] |
Sunda W G, Price N M, Morel F M M. Trace metal ion buffers and their use in culture studies[J]. Algal Culturing Techniques, 2005, 4: 35−63.
|
[32] |
Guillard R R L, Ryther J H. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) gran[J]. Canadian Journal of Microbiology, 1962, 8(2): 229−239. doi: 10.1139/m62-029
|
[33] |
Riebesell U, Fabry V J, Hansson L, et al. Guide to Best Practices for Ocean Acidification Research and Data Reporting[M]. Luxembourg: Office for Official Publications of the European Communities, 2011.
|
[34] |
Sun Jun, Liu Dongyan. Geometric models for calculating cell biovolume and surface area for phytoplankton[J]. Journal of Plankton Research, 2003, 25(11): 1331−1346. doi: 10.1093/plankt/fbg096
|
[35] |
Ritchie R J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents[J]. Photosynthesis Research, 2006, 89(1): 27−41. doi: 10.1007/s11120-006-9065-9
|
[36] |
Brzezinski M A, Nelson D M. The annual silica cycle in the Sargasso Sea near Bermuda[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1995, 42(7): 1215−1237. doi: 10.1016/0967-0637(95)93592-3
|
[37] |
Wu Yaping, Beardall J, Gao Kunshan. Physiological responses of a model marine diatom to fast pH changes: special implications of coastal water acidification[J]. PLoS One, 2015, 10(10): e0141163. doi: 10.1371/journal.pone.0141163
|
[38] |
Jassby A D, Platt T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton[J]. Limnology and Oceanography, 1976, 21(4): 540−547. doi: 10.4319/lo.1976.21.4.0540
|
[39] |
陈善文. 赤潮棕囊藻生态生理学研究[D]. 广东: 汕头大学, 2012.
Chen Shanwen. Ecophysiological studies on the red-tide alga Phaeocystis globose[D]. Guangdong: Shantou University, 2012
|
[40] |
Finkel Z V, Beardall J, Flynn K J, et al. Phytoplankton in a changing world: cell size and elemental stoichiometry[J]. Journal of Plankton Research, 2010, 32(1): 119−137. doi: 10.1093/plankt/fbp098
|
[41] |
Reinfelder J R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton[J]. Annual Review of Marine Science, 2011, 3: 291−315. doi: 10.1146/annurev-marine-120709-142720
|
[42] |
Turley C, Eby M, Ridgwell A J, et al. The societal challenge of ocean acidification[J]. Marine Pollution Bulletin, 2010, 60(6): 787−792. doi: 10.1016/j.marpolbul.2010.05.006
|
[43] |
Li Wei, Ding Jiancheng, Li Futian, et al. Functional responses of smaller and larger diatoms to gradual CO2 rise[J]. Science of the Total Environment, 2019, 680: 79−90. doi: 10.1016/j.scitotenv.2019.05.035
|
[44] |
Beardall J, Giordano M. Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation[J]. Functional Plant Biology, 2002, 29(3): 335−347. doi: 10.1071/PP01195
|
[45] |
Tortell P D, Rau G H, Morel F M M. Inorganic carbon acquisition in coastal Pacific phytoplankton communities[J]. Limnology and Oceanography, 2000, 45(7): 1485−1500. doi: 10.4319/lo.2000.45.7.1485
|
[46] |
Passow U, Laws E A. Ocean acidification as one of multiple stressors: growth response of Thalassiosira weissflogii (diatom) under temperature and light stress[J]. Marine Ecology Progress Series, 2015, 541: 75−90. doi: 10.3354/meps11541
|
[47] |
Gao Kunshan, Xu Juntian, Gao Guang, et al. Rising CO2 and increased light exposure synergistically reduce marine primary productivity[J]. Nature Climate Change, 2012, 2(7): 519−523. doi: 10.1038/nclimate1507
|
[48] |
Li Wei, Yang Yuling, Li Zhenzhen, et al. Effects of seawater acidification on the growth rates of the diatom Thalassiosira (Conticribra) weissflogii under different nutrient, light, and UV radiation regimes[J]. Journal of Applied Phycology, 2017, 29(1): 133−142. doi: 10.1007/s10811-016-0944-y
|
[49] |
McMinn A, Müller M N, Martin A, et al. The response of Antarctic sea ice algae to changes in pH and CO2[J]. PLoS One, 2014, 9(1): e86984. doi: 10.1371/journal.pone.0086984
|
[50] |
Burkhardt S, Zondervan I, Riebesell U. Effect of CO2 concentration on C: N: P ratio in marine phytoplankton: a species comparison[J]. Limnology and Oceanography, 1999, 44(3): 683−690. doi: 10.4319/lo.1999.44.3.0683
|
[51] |
Woodger F J, Badger M R, Price G D. Regulation of cyanobacterial CO2-concentrating mechanisms through transcriptional induction of high-affinity Ci-transport systems[J]. Canadian Journal of Botany, 2005, 83(7): 698−710. doi: 10.1139/b05-050
|
[52] |
Li Futian, Fan Jiale, Hu Lili, et al. Physiological and biochemical responses of Thalassiosira weissflogii (diatom) to seawater acidification and alkalization[J]. ICES Journal of Marine Science, 2019, 76(6): 1850. doi: 10.1093/icesjms/fsz028
|
[53] |
Taucher J, Jones J, James A, et al. Combined effects of CO2 and temperature on carbon uptake and partitioning by the marine diatoms Thalassiosira weissflogii and Dactyliosolen fragilissimus[J]. Limnology and Oceanography, 2015, 60(3): 901−919. doi: 10.1002/lno.10063
|
[54] |
Hancock A M, Davidson A T, McKinlay J, et al. Ocean acidification changes the structure of an Antarctic coastal protistan community[J]. Biogeosciences, 2018, 15(8): 2393−2410. doi: 10.5194/bg-15-2393-2018
|
[55] |
Wu Yaping, Campbell D A, 111Irwin A J, et al. 111Ocean acidification enhances the growth rate of larger diatom111s[J]. Limnology and111 Oceanography, 2014, 59(3): 1027−1034. doi: 10.4319/lo.2014.59.3.1027
|
[56] |
Li Futian, Wu Yaping, Hutchins D A, et al. Physiological responses of coastal and oceanic diatoms to diurnal fluctuations in seawater carbonate chemistry under two CO2 concentrations[J]. Biogeosciences, 2016, 13(22): 6247−6259. doi: 10.5194/bg-13-6247-2016
|
[57] |
Hutchins D A, Walworth N G, Webb E A, et al. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide[J]. Nature Communications, 2015, 6(1): 8155. doi: 10.1038/ncomms9155
|
[58] |
Tong Shanying, Gao Kunshan, Hutchins D A. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1, 000 generations of selection under elevated CO2[J]. Global Change Biology, 2018, 24(7): 3055−3064. doi: 10.1111/gcb.14065
|
[59] |
Li Futian, Beardall J, Collins S, et al. Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO2 over 1800 generations[J]. Global Change Biology, 2017, 23(1): 127−137. doi: 10.1111/gcb.13501
|