Citation: | Wang Peng-Fei, Xu Song-Lin. Deformation evolution and diffusion characteristics of PMMA under impact loading[J]. Rhhz Test. doi: 10.7498/aps.71.20220740test |
Dynamic compression experiments on cubic polymethyl methacrylate (PMMA) specimens and two kinds of trapezoid PMMA specimens are carried by changing the transmission bars into steel bar and aluminum bar on the experimental device of split Hopkinson pressure bar (SHPB). The compression processes of PMMA specimens are recorded by high-speed photography, and the breakage processes of PMMA specimens are analyzed based on the force displacement curves and high-speed images. The evolutions of deformation and diffusion resistances of PMMA specimens under impact loading are discussed. The results show that the failure of the sample is caused mainly by the partial failure front at the contact end, and then the failure front propagates to the inside of the sample, s leading the sample to break. The failure front of cubic sample is generated preferentially at the transmission end under low speed impact and at the incident end under the higher speed impact. After changing the shape of the specimen and the material of the transmission bar, the relaxation phenomenon is prominent, and the failure front occurs only at the incident end. The compressive deformation of the trapezoid sample before breakage is non-uniform, and the stress and strain in the sample gradually decrease with the increase of the cross section, and show a linear diffusion distribution. The strain distribution and shear activation diffusion equation are used to obtain the generalized diffusion resistance distribution of the failure front. The generalized diffusion resistance increases first in front of the failure front and decreases after the failure front, and the amplitude of the generalized diffusion resistance is related to the release of local strain energy.
[1] |
徐松林, 单俊芳, 王鹏飞. 现代应用物理,2020,11:30101. doi: 10.12061/j.issn.2095-6223.2020.030101
Xu S L, Shan J F, Wang P F. Mod. Appl. Phys., 2020, 11: 30101. (in Chinese) doi: 10.12061/j.issn.2095-6223.2020.030101
|
[2] |
马棋棋, 熊迅, 郑宇轩, 周风华. 高压物理学报,2019,33:044101. doi: 10.11858/gywlxb.20190719
Ma Q Q, Xiong X, Zheng Y X, Zhou F H. Chin. J. High Pressure Phys., 2019, 33: 044101. (in Chinese) doi: 10.11858/gywlxb.20190719
|
[3] |
Huang J, Xu S, Hu S. Rock Mech. Rock Eng., 2013, 47: 1727.
|
[4] |
陈兴, 马刚, 周伟, 赖国伟, 来志强. 物理学报,2018,67:146102. doi: 10.7498/aps.67.20180276
Chen X, Ma G, Zhou W, Lai G W, Lai Z Q. Acta Phys. Sin., 2018, 67: 146102. (in Chinese) doi: 10.7498/aps.67.20180276
|
[5] |
Jiang H B, Xu S L, Shan J F, Wang D R, Liu Y G, Zhou L J, Wang P F. Powder Technol., 2019, 353: 359. doi: 10.1016/j.powtec.2019.05.028
|
[6] |
Shan J, Xu S, Liu Y G, Zhou L J, Wang P F. Powder Technol., 2018, 330: 317. doi: 10.1016/j.powtec.2018.02.009
|
[7] |
Potapov A V, Campbell C S. Powder Technol., 1997, 93: 13. doi: 10.1016/S0032-5910(97)03242-7
|
[8] |
Rasorenov S V, Kanel G I, Fortov V E, Abasehov M M. Int. J. High Pressure Res., 1991, 6: 225. doi: 10.1080/08957959108202508
|
[9] |
Espinosa H D. Mech. Mater., 1998, 29: 219. doi: 10.1016/S0167-6636(98)00016-7
|
[10] |
冯晓伟, 李俊承, 王洪波, 常敬臻. 物理学报,2016,65:166201. doi: 10.7498/aps.65.166201
Feng X W, Li J C, Wang H B, Chang J Z. Acta Phys. Sin., 2016, 65: 166201. (in Chinese) doi: 10.7498/aps.65.166201
|
[11] |
Anderson Jr C E, Bigger R P, Weiss C E. Int. J. Appl. Glass Sci., 2014, 5: 374. doi: 10.1111/ijag.12091
|
[12] |
Huang J Y, Li Y, Liu Q C, Zhou X M, Liu L W, Liu C L, Zhu H M, Luo S N. Phys. Rev. B, 2015, 92: 144101. doi: 10.1103/PhysRevB.92.144101
|
[13] |
Sheikh M Z, Atif M, Li Y L, Zhou F H, Raza M A, Dar U A, Gao G Z, Wang Y M. Constr. Build. Mater., 2021, 288: 123088. doi: 10.1016/j.conbuildmat.2021.123088
|
[14] |
易洪昇, 徐松林, 单俊芳, 张鸣. 爆炸与冲击,2017,37:913. doi: 10.11883/1001-1455(2017)05-0913-10
Yi H S, Xu S L, Shan J F, Zhang M. Explosion and Shock Waves, 2017, 37: 913. (in Chinese) doi: 10.11883/1001-1455(2017)05-0913-10
|
[15] |
宋一平, 苗春贺, 单俊芳, 王鹏飞, 徐松林. 爆炸与冲击,2022,42:073103. doi: 10.11883/bzycj-2021-0244
Song Y P, Miao C H, Shan J F, Wang P F, Xu S L. Explosion and Shock Waves, 2022, 42: 073103. (in Chinese) doi: 10.11883/bzycj-2021-0244
|
[16] |
方继松, 王珠, 熊迅, 郑宇轩, 周凤华. 高压物理学报,2020,34:014101. doi: 10.11858/gywlxb.20190764
Fang J S, Wang Z, Xiong X, Zheng Y X, Zhou F H. Chin. J. High Pressure Phys., 2020, 34: 014101. (in Chinese) doi: 10.11858/gywlxb.20190764
|
[17] |
Miao C H, Xu S L, Song Y P, Xie Y S, Yuan L Z, Wang P F. Powder Technol., 2022, 397: 117081. doi: 10.1016/j.powtec.2021.117081
|
[18] |
Liu D, Shen L, Guillard F, Einav I. Int. J. Impact Eng., 2016, 93: 222. doi: 10.1016/j.ijimpeng.2016.03.005
|
[19] |
简世豪, 苗春贺, 张磊, 单俊芳, 王鹏飞, 徐松林. 高压物理学报,2021,35:024202. doi: 10.11858/gywlxb.20200629
Jian S H, Miao C H, Zhang Lei, Shan J F, Wang P F, Xu S L. Chin. J. High Pressure Phys., 2021, 35: 024202. (in Chinese) doi: 10.11858/gywlxb.20200629
|
[20] |
Xing H Z, Zhang Q B, Braithwaite C H, Pan B, Zhao J. Rock Mech. Rock Eng., 2017, 50: 1611. doi: 10.1007/s00603-016-1164-0
|
[21] |
Zhou L, Xu S, Shan J, Liu Y, Wang P. Mech. Mater., 2018, 123: 1. doi: 10.1016/j.mechmat.2018.04.013
|
[22] |
Grady D. 2017 Phys. Shock Impact (Vol. 1) (London: IOP Publishing) pp2-57—2-68
|
[23] |
Mott N F. Proc. R. Soc. London,Ser. A, 1947, 189: 300. doi: 10.1098/rspa.1947.0042
|
[24] |
Feng R. J. Appl. Phys., 2000, 87: 1693. doi: 10.1063/1.372079
|
[25] |
刘占芳, 常敬臻, 姚国文, 张凯, 李建鹏. 力学学报,2006,38:626. doi: 10.3321/j.issn:0459-1879.2006.05.008
Liu Z F, Chang J Z, Yao G W, Zhang K, Li J P. Chin. J. Theor. Appl. Mech., 2006, 38: 626. (in Chinese) doi: 10.3321/j.issn:0459-1879.2006.05.008
|