Article Navigation >
Rhhz Test
>
2020 > Accepted Manuscript
Amirzade Farzane, Sadeghi Mohammad-Reza, Panario Daniel. QC-LDPC construction free of small size elementary trapping sets based on multiplicative subgroups of a finite field[J]. Rhhz Test. doi: 10.3934/amc.2020062
Citation:
Amirzade Farzane, Sadeghi Mohammad-Reza, Panario Daniel. QC-LDPC construction free of small size elementary trapping sets based on multiplicative subgroups of a finite field[J]. Rhhz Test. doi: 10.3934/amc.2020062
Amirzade Farzane, Sadeghi Mohammad-Reza, Panario Daniel. QC-LDPC construction free of small size elementary trapping sets based on multiplicative subgroups of a finite field[J]. Rhhz Test. doi: 10.3934/amc.2020062
Citation:
Amirzade Farzane, Sadeghi Mohammad-Reza, Panario Daniel. QC-LDPC construction free of small size elementary trapping sets based on multiplicative subgroups of a finite field[J]. Rhhz Test. doi: 10.3934/amc.2020062
Trapping sets significantly influence the performance of low-density parity-check codes. An $ (a, b) $ elementary trapping set (ETS) causes high decoding failure rate and exert a strong influence on the error floor of the code, where $ a $ and $ b $ denote the size and the number of unsatisfied check-nodes in the ETS, respectively. The smallest size of an ETS in $ (3, n) $-regular LDPC codes with girth 6 is 4. In this paper, we provide sufficient conditions to construct fully connected $ (3, n) $-regular algebraic-based QC-LDPC codes with girth 6 whose Tanner graphs are free of $ (a, b) $ ETSs with $ a\leq5 $ and $ b\leq2 $. We apply these sufficient conditions to the exponent matrix of a new algebraic-based QC-LDPC code with girth at least 6. As a result, we obtain the maximum size of a submatrix of the exponent matrix which satisfies the sufficient conditions and yields a Tanner graph free of those ETSs with small size. Some algebraic-based QC-LDPC code constructions with girth 6 in the literature are special cases of our construction. Our experimental results show that removing ETSs with small size contribute to have better performance curves in the error floor region.
AmirzadeF.AlishahiM.SadeghiM.-R.An algebraic construction of QC-LDPC codes based on powers of primitive elements in a finite field and free of small ETSs20196129140
[2]
AmirzadeF.SadeghiM.-R.Lower bounds on the lifting degree of QC-LDPC codes by difference matrices20186236882370010.1109/ACCESS.2018.2830406 doi: 10.1109/ACCESS.2018.2830406
[3]
AmirzadeF.SadeghiM.-R.Analytical lower bounds on the size of elementary trapping sets of variable-regular LDPC codes with any girth and irregular ones with girth 82018662313232110.1109/TCOMM.2018.2805834 doi: 10.1109/TCOMM.2018.2805834
[4]
F. Amirzade and M.-R. Sadeghi, Efficient search of QC-LDPC codes with girths 6 and 8 and free of small elementary trapping sets with small size, arXiv: 1803.08141.
[5]
M. Battaglioni, A. Tasdighi, M. Baldi, M. H. Tadayon and F. Chiaraluce, Compact QC-LDPC block and SC-LDPC convolutional codes for low-latency communications, 2018 IEEE 29th Ann. Int. Symp. PIMRC, (2018), 1–5.
[6]
BocharovaI. E.HugF.JohannessonR.KudryashovB. D.SatyukovR. V.Searching for voltage graph-based LDPC tailbiting codes with large girth2012582265227910.1109/TIT.2011.2176717MR2951330 doi: 10.1109/TIT.2011.2176717
[7]
J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
Q. J. Diao, Q. Huang, S. Lin and K. Abdel-Ghaffar, A transform approach for analyzing and constructing quasi-cyclic low-density parity-check codes, IEEE Trans. Inf. Theory Appl. Workshop, San Diego, CA, USA, (2011), 1–8.
[10]
M. Diouf, D. Declercq, S. Ouya and B. Vasic, A PEG-like LDPC code design avoiding short trapping sets, IEEE Int. Symp. Inf. Theory (ISIT), (2015), 1079–1083.
[11]
FossorierM. P. C.Quasi-cyclic low-density parity-check codes from circulant permutation matrices2004501788179310.1109/TIT.2004.831841MR2096847 doi: 10.1109/TIT.2004.831841
[12]
Q. Huang, Q. Diao, S. Lin and K. Abdel-Ghaffar, Trapping sets of structured LDPC codes, 2011 IEEE Int. Symp. Inf. Theory, (2011), 1086–1090.
[13]
LiJ.LiuK.LinS.Abdel-GhaffarK.Algebraic quasi-cyclic LDPC codes: Construction, low error-floor, large girth and a reduced-complexity decoding scheme2014622626263710.1109/TCOMM.2014.2339329 doi: 10.1109/TCOMM.2014.2339329
[14]
J. Li, K. Liu, S. Lin and K. Abdel-Ghaffar, Quasi-cyclic LDPC codes on two arbitrary sets of a finite field, IEEE Int. Symp. Inf. Theory, (2014), 2454–2458.
[15]
LiJ.LiuK.LinS.Abdel-GhaffarK.A matrix-theoretic approach to the construction of non-binary quasi-cyclic LDPC codes20156310571068
[16]
K. Liu, Q. Huang, S. Lin and K. Abdel-Ghaffar, Quasi-cyclic LDPC codes: Construction and rank analysis of their parity-check matrices, IEEE Inf. Theory and Appl. Workshop, (2012), 227–233.
[17]
NguyenD. V.ChilappagariS. K.MarcellinN. W.VasicB.On the construction of structured LDPC codes free of small trapping sets2012582280230210.1109/TIT.2011.2173733MR2951331 doi: 10.1109/TIT.2011.2173733
[18]
O'SullivanM. E.Algebraic construction of sparse matrices with large girth20065271872710.1109/TIT.2005.862120MR2236186 doi: 10.1109/TIT.2005.862120
[19]
SadeghiM.-R.Optimal search for girth-8 quasi cyclic and spatially coupled multiple-edge LDPC codes2019231466146910.1109/LCOMM.2019.2924892 doi: 10.1109/LCOMM.2019.2924892
[20]
SadeghiM.-R.AmirzadeF.Analytical lower bound on the lifting degree of multiple-edge QC-LDPC codes with girth 62018221528153110.1109/LCOMM.2018.2841873 doi: 10.1109/LCOMM.2018.2841873
[21]
SakzadA.SadeghiM.-R.PanarioD.Codes with girth 8 Tanner graph representation201057718110.1007/s10623-009-9349-0MR2669669 doi: 10.1007/s10623-009-9349-0
[22]
SongS.ZhouB.LinS.Abdel-GhaffarK.A unified approach to the construction of binary and nonbinary Quasi-cyclic LDPC codes based on finite field2009578493
[23]
H TadayonM.AlirezaT.MassinoB.Efficient search of compact QC-LDPC and SC-LDPC convolutional codes with large girth2018221156115910.1109/LCOMM.2018.2827959 doi: 10.1109/LCOMM.2018.2827959
[24]
TaoX. F.LiY. F.LiuY. H.HuZ. Q.On the construction of LDPC codes free of small trapping sets by controlling cycles20182291210.1109/LCOMM.2017.2679707 doi: 10.1109/LCOMM.2017.2679707
[25]
TasdighiA.BanihashemiA. H.SadeghiM. R.Efficient search of girth-optimal QC-LDPC codes2016621552156410.1109/TIT.2016.2523979MR3480065 doi: 10.1109/TIT.2016.2523979
[26]
WangJ. D.DolecekL.WeselR. D.The cycle consistency matrix approach to absorbing sets in separable circulant-based LDPC codes2013592293231410.1109/TIT.2012.2235122MR3043798 doi: 10.1109/TIT.2012.2235122
[27]
Y. G. Wang, J. S. Yedidia and S. C. Draper, Construction of high-girth QC-LDPC codes, 2008 5th Int. Symp. Turbo Codes and related Topics, (2008), 180–185.
[28]
ZhangG.SunR.WangX.Explicit construction of girth-eight QC-LDPC codes and its application in CRT methods201233171176
[29]
ZhangL.LinS.Abdel GhaffarK.DingZ.ZhouB.Quasi-Cyclic LDPC codes on cyclic subgroups of finite fields2011592330233610.1109/TCOMM.2011.060911.100208 doi: 10.1109/TCOMM.2011.060911.100208
[30]
L. Zhang, S. Lin, K. Abdel Ghaffar and B. Zhou, Circulant arrays: Rank analysis and construction of Quasi-Cyclic LDPC codes, IEEE Int. Symp. Inf. Theory (ISIT), (2010), 814–818.
Figure 1. A (5, 3) EAS with $\gamma = 4$ and its corresponding variable node graph
Figure 2. The variable node graphs of $ (4, 0) $, $ (4, 2) $ and $ (5, 1) $ ETSs with girth 6
Figure 3. The comparison of the performance curves of two $(3, 4)$-regular QC-LDPC codes with the same length. The exponent matrices of both codes, $C1$ and $C2$, are submatrices of B in (10)