| Citation: | ,,,,,,,,,,2021. . 震灾防御技术, 1(1):18−23. doi:10.1009/s12274-020-2948-91-24 doi: 10.1009/s12274-020-2948-91-24 | 
The corrosion of metals can be induced by different environmental and operational conditions, and protecting metals from corrosion is a serious concern in many applications. The development of new materials and/or technologies to improve the efficiency of anti-corrosion coatings has attracted renewed interest. In this study, we develop a protective coating composed of a bilayer structure of reduced graphene oxide (RGO)/graphene oxide (GO) applied to Cu plates by spray-coating and subsequent annealing. The annealing of the GO/Cu plates at 120 ℃ produces a bilayer structure of RGO/GO by the partial reduction of the spray-coated GO layer. This induces superior corrosion resistance and adhesion strength compared to those of GO/Cu and RGO/Cu plates because of the hydrophobic nature of the RGO surface exposed to the surroundings and the formation of Cu-O bonds with the O-based functional groups of GO. This approach provides a viable and scalable route for using graphene coatings to protect metal surfaces from corrosion.
	                | [1] | 
					 Gray, J.Protective coatings on magnesium and its alloys—A critical reviewJ. Alloy. Compd., 
							3362002. :88 − 113. doi:  10.1016/S0925-8388(01)01899-0 
						
					 | 
			
| [2] | 
					 Tallman, D.Electroactive conducting polymers for corrosion controlJ. Solid State Electrochem., 
							62002. :73 − 84. doi:  10.1007/s100080100212 
						
					 | 
			
| [3] | 
					 Araujo, W.Undoped polyaniline anticorrosive propertiesElectrochim. Acta, 
							462001. :1307 − 1312. doi:  10.1016/S0013-4686(00)00726-X 
						
					 | 
			
| [4] | 
					 Novoselov, K.Electric field effect in atomically thin carbon filmsScience, 
							3062004. :666 − 669. doi:  10.1126/science.1102896 
						
					 | 
			
| [5] | 
					 Novoselov, K.A roadmap for grapheneNature, 
							4902012. :192 − 200. doi:  10.1038/nature11458 
						
					 | 
			
| [6] | 
					 Vadukumpully, S.Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stabilityCarbon, 
							492011. :198 − 205. doi:  10.1016/j.carbon.2010.09.004 
						
					 | 
			
| [7] | 
					 Chen, S.Oxidation resistance of graphene-coated Cu and Cu/Ni alloyACS Nano, 
							52011. :1321 − 1327. doi:  10.1021/nn103028d 
						
					 | 
			
| [8] | 
					 Aneja, K.Graphene based anticorrosive coatings for Cr(VI) replacementNanoscale, 
							72015. :17879 − 17888. doi:  10.1039/C5NR04702A 
						
					 | 
			
| [9] | 
					 Prasai, D.Graphene: Corrosion-inhibiting coatingACS Nano, 
							62012. :1102 − 1108. doi:  10.1021/nn203507y 
						
					 | 
			
| [10] | 
					 Brownson, D.The electrochemistry of CVD graphene: Progress and prospectsPhys. Chem. Chem. Phys., 
							142012. :8264 − 8281. doi:  10.1039/c2cp40225d 
						
					 | 
			
| [11] | 
					 Kim, K.Ripping graphene: Preferred directionsNano Lett., 
							122012. :293 − 297. doi:  10.1021/nl203547z 
						
					 | 
			
| [12] | 
					 Lin, Y.Wafer-scale graphene integrated circuitScience, 
							3322011. :1294 − 1297. doi:  10.1126/science.1204428 
						
					 | 
			
| [13] | 
					 Li, D.Processable aqueous dispersions of graphene nanosheetsNat. Nanotechnol., 
							32008. :101 − 105. doi:  10.1038/nnano.2007.451 
						
					 | 
			
| [14] | 
					 Kang, D.Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayersACS Nano, 
							62012. :7763 − 7769. doi:  10.1021/nn3017316 
						
					 | 
			
| [15] | 
					 Lipomi, D.Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubesNat. Nanotechnol., 
							62011. :788 − 792. doi:  10.1038/nnano.2011.184 
						
					 | 
			
| [16] | 
					 Krantz, J.Spray-coated silver nanowires as top electrode layer in semitransparent P3HT: PCBM-based organic solar cell devicesAdv. Funct. Mater., 
							232013. :1711 − 1717. doi:  10.1002/adfm.201202523 
						
					 | 
			
| [17] | 
					 Hummers, W.Preparation of graphitic oxideJ. Am. Chem. Soc., 
							801958. :1339. doi:  10.1021/ja01539a017 
						
					 | 
			
| [18] | 
					 Jang, K.Sub-10-nm Co 
							3O 
							4 nanoparticles/ graphene composites as high-performance anodes for lithium storageChem. Eng. J., 
							3092017. :15 − 21. doi:  10.1016/j.cej.2016.10.009 
						
					 | 
			
| [19] | 
					 Pei, S.Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acidsCarbon, 
							482010. :4466 − 4474. doi:  10.1016/j.carbon.2010.08.006 
						
					 | 
			
| [20] | 
					 Mattevi, C.Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin filmsAdv. Funct. Mater., 
							192009. :2577 − 2583. doi:  10.1002/adfm.200900166 
						
					 | 
			
| [21] | 
					 Gilje, S.A chemical route to graphene for device applicationsNano Lett., 
							72007. :3394 − 3398. doi:  10.1021/nl0717715 
						
					 | 
			
| [22] | 
					 Lin, L.Formation of tunable graphene oxide coating with high adhesionPhys. Chem. Chem. Phys., 
							182016. :5086 − 5090. doi:  10.1039/C5CP06906H 
						
					 | 
			
| [23] | 
					 Khusnun, N.Interaction between copper and carbon nanotubes triggers their mutual role in the enhanced photodegradation of p-chloroanilinePhys. Chem. Chem. Phys., 
							182016. :12323 − 12331. doi:  10.1039/C5CP08068A 
						
					 | 
			
| [24] | 
					 Wang, G.Facile synthesis and characterization of graphene nanosheets J. Phys. Chem. C, 
							1122008. :8192 − 8195. doi:  10.1021/jp710931h 
						
					 |