Citation: | ,,,,,,,,,,2021. . 震灾防御技术, 1(1):18−23. doi:10.1009/s12274-020-2948-91-24 doi: 10.1009/s12274-020-2948-91-24 |
The corrosion of metals can be induced by different environmental and operational conditions, and protecting metals from corrosion is a serious concern in many applications. The development of new materials and/or technologies to improve the efficiency of anti-corrosion coatings has attracted renewed interest. In this study, we develop a protective coating composed of a bilayer structure of reduced graphene oxide (RGO)/graphene oxide (GO) applied to Cu plates by spray-coating and subsequent annealing. The annealing of the GO/Cu plates at 120 ℃ produces a bilayer structure of RGO/GO by the partial reduction of the spray-coated GO layer. This induces superior corrosion resistance and adhesion strength compared to those of GO/Cu and RGO/Cu plates because of the hydrophobic nature of the RGO surface exposed to the surroundings and the formation of Cu-O bonds with the O-based functional groups of GO. This approach provides a viable and scalable route for using graphene coatings to protect metal surfaces from corrosion.
[1] |
Gray, J.Protective coatings on magnesium and its alloys—A critical reviewJ. Alloy. Compd.,
3362002. :88 − 113. doi: 10.1016/S0925-8388(01)01899-0
|
[2] |
Tallman, D.Electroactive conducting polymers for corrosion controlJ. Solid State Electrochem.,
62002. :73 − 84. doi: 10.1007/s100080100212
|
[3] |
Araujo, W.Undoped polyaniline anticorrosive propertiesElectrochim. Acta,
462001. :1307 − 1312. doi: 10.1016/S0013-4686(00)00726-X
|
[4] |
Novoselov, K.Electric field effect in atomically thin carbon filmsScience,
3062004. :666 − 669. doi: 10.1126/science.1102896
|
[5] |
Novoselov, K.A roadmap for grapheneNature,
4902012. :192 − 200. doi: 10.1038/nature11458
|
[6] |
Vadukumpully, S.Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stabilityCarbon,
492011. :198 − 205. doi: 10.1016/j.carbon.2010.09.004
|
[7] |
Chen, S.Oxidation resistance of graphene-coated Cu and Cu/Ni alloyACS Nano,
52011. :1321 − 1327. doi: 10.1021/nn103028d
|
[8] |
Aneja, K.Graphene based anticorrosive coatings for Cr(VI) replacementNanoscale,
72015. :17879 − 17888. doi: 10.1039/C5NR04702A
|
[9] |
Prasai, D.Graphene: Corrosion-inhibiting coatingACS Nano,
62012. :1102 − 1108. doi: 10.1021/nn203507y
|
[10] |
Brownson, D.The electrochemistry of CVD graphene: Progress and prospectsPhys. Chem. Chem. Phys.,
142012. :8264 − 8281. doi: 10.1039/c2cp40225d
|
[11] |
Kim, K.Ripping graphene: Preferred directionsNano Lett.,
122012. :293 − 297. doi: 10.1021/nl203547z
|
[12] |
Lin, Y.Wafer-scale graphene integrated circuitScience,
3322011. :1294 − 1297. doi: 10.1126/science.1204428
|
[13] |
Li, D.Processable aqueous dispersions of graphene nanosheetsNat. Nanotechnol.,
32008. :101 − 105. doi: 10.1038/nnano.2007.451
|
[14] |
Kang, D.Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayersACS Nano,
62012. :7763 − 7769. doi: 10.1021/nn3017316
|
[15] |
Lipomi, D.Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubesNat. Nanotechnol.,
62011. :788 − 792. doi: 10.1038/nnano.2011.184
|
[16] |
Krantz, J.Spray-coated silver nanowires as top electrode layer in semitransparent P3HT: PCBM-based organic solar cell devicesAdv. Funct. Mater.,
232013. :1711 − 1717. doi: 10.1002/adfm.201202523
|
[17] |
Hummers, W.Preparation of graphitic oxideJ. Am. Chem. Soc.,
801958. :1339. doi: 10.1021/ja01539a017
|
[18] |
Jang, K.Sub-10-nm Co
3O
4 nanoparticles/ graphene composites as high-performance anodes for lithium storageChem. Eng. J.,
3092017. :15 − 21. doi: 10.1016/j.cej.2016.10.009
|
[19] |
Pei, S.Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acidsCarbon,
482010. :4466 − 4474. doi: 10.1016/j.carbon.2010.08.006
|
[20] |
Mattevi, C.Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin filmsAdv. Funct. Mater.,
192009. :2577 − 2583. doi: 10.1002/adfm.200900166
|
[21] |
Gilje, S.A chemical route to graphene for device applicationsNano Lett.,
72007. :3394 − 3398. doi: 10.1021/nl0717715
|
[22] |
Lin, L.Formation of tunable graphene oxide coating with high adhesionPhys. Chem. Chem. Phys.,
182016. :5086 − 5090. doi: 10.1039/C5CP06906H
|
[23] |
Khusnun, N.Interaction between copper and carbon nanotubes triggers their mutual role in the enhanced photodegradation of p-chloroanilinePhys. Chem. Chem. Phys.,
182016. :12323 − 12331. doi: 10.1039/C5CP08068A
|
[24] |
Wang, G.Facile synthesis and characterization of graphene nanosheets J. Phys. Chem. C,
1122008. :8192 − 8195. doi: 10.1021/jp710931h
|