留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚甲基丙烯酸甲酯的冲击破碎扩散特性研究

徐松林 车莹

徐松林, 车莹. 聚甲基丙烯酸甲酯的冲击破碎扩散特性研究[J]. 仁和测试. doi: 10.7498/aps.71.20220740test
引用本文: 徐松林, 车莹. 聚甲基丙烯酸甲酯的冲击破碎扩散特性研究[J]. 仁和测试. doi: 10.7498/aps.71.20220740test
Wang Peng-Fei, Xu Song-Lin. Deformation evolution and diffusion characteristics of PMMA under impact loading[J]. Rhhz Test. doi: 10.7498/aps.71.20220740test
Citation: Wang Peng-Fei, Xu Song-Lin. Deformation evolution and diffusion characteristics of PMMA under impact loading[J]. Rhhz Test. doi: 10.7498/aps.71.20220740test

聚甲基丙烯酸甲酯的冲击破碎扩散特性研究

doi: 10.7498/aps.71.20220740test
基金项目: 高压物理与地震科技联合实验室室开放基金 (批准号: 2019 HPPES01)和国家自然科学基金(批准号: 11672286, 11872361, 11602267) 资助的课题.
详细信息
    通讯作者:

    E-mail: 1969631769@qq.com

  • 中图分类号: 62.25.Mn, 62.20.-x, 66.70.Hk, 66.30.-h

Deformation evolution and diffusion characteristics of PMMA under impact loading

Funds: Project supported by the Opening Foundation of the United Laboratory of High-Pressure Physics and Earthquake Science, China (Grant No. 2019 HPPES01), and the National Natural Science Foundation of China (Grant Nos. 11672286, 11872361, 11602267).
More Information
  • 摘要:

    应用霍普金森压杆(SHPB)实验装置, 通过改变透射杆为钢杆和铝杆, 对立方体聚甲基丙烯酸甲酯(PMMA)试样和两种梯台PMMA试样进行动态压缩实验. 利用高速摄影记录试样的压缩过程, 并结合力位移曲线分析试样的破碎过程, 探讨了冲击载荷作用下PMMA试样变形和广义扩散阻力的演化. 结果表明: 试样的破坏模式主要为接触端局部产生失效阵面, 然后失效阵面向试样内部扩展. 立方体试样在低速冲击下, 失效阵面优先在透射端产生; 在高速冲击下, 失效阵面在入射端先产生. 通过改变试样形状和透射杆材质后, 阵面的产生存在明显的弛豫现象, 并且失效阵面仅在入射端产生. 梯台试样破碎前的压缩变形是非均匀的, 试样内部应力状态和变形状态随着截面增加逐渐变小, 并且呈线性扩散分布. 通过应变分布结合剪切激活扩散方程, 得到失效阵面扩散过程中的广义扩散阻力分布情况; 失效阵面前后广义扩散阻力先增加后减小, 阻力的幅值与局部应变能的释放有关.

     

  • 图  1  试样规格 (a) 立方体试样; (b) 梯台试样; (c) 梯台试样简图

    Figure  1.  Sample specifications: (a) Cube sample; (b) trapezoid sample; (c) diagram of the trapezoid sample.

    图  2  SHPB 实验装置

    Figure  2.  Schematic diagram of the modified SHPB device.

    图  3  冲击过程中的载荷位移曲线和破碎过程 (a1) 透射杆为钢杆时立方体试样的力位移曲线; (a2) 冲击速度为7.8 m/s时立方体试样的破坏过程; (b1)透射杆为钢杆时梯台试样Ⅰ的力位移曲线; (b2) 梯台试样Ⅰ的破坏过程(冲击速度为12.38 m/s); (c1)透射杆为铝杆时梯台试样Ⅰ的力位移曲线; (c2) 透射杆为铝杆时梯台试样Ⅰ的破坏过程(冲击速度为15.45 m/s). 橙色箭头表示冲击方向

    Figure  3.  Load displacement curve and crushing process during impact: (a1) Load displacement curve of cube sample under steel transmission bar; (a2) cube sample deformation process under impact velocity 7.8 m/s; (b1) load displacement curve of trapezoid sample Ⅰ under steel transmission bar; (b2) trapezoid sample Ⅰ under steel transmission bar (impact velocity 12.38 m/s); (c1) load displacement curve of trapezoid sample Ⅰ under aluminum transmission bar; (c2) trapezoid sample Ⅰ under aluminum transmission bar (impact velocity 15.45 m/s). The orange arrow denotes the impact direction.

    图  4  梯台试样Ⅰ在钢杆下的应变分布 (冲击速度13.3 m/s) (a) DIC计算区域; (b) 高速摄影图片; (c) 2 D等效剪应变场. (箭头表示冲击方向)

    Figure  4.  Strain distribution of trapezoid sample Ⅰ under steel transmission bar (impact velocity of 13.3 m/s): (a) Area of DIC calculation; (b) high speed images; (c) 2 D equivalent shear strain field (The arrow denotes the impact direction).

    图  5  梯台Ⅰ试样在铝杆下的应变分布 (冲击速度16.21 m/s) (a) 高速摄影图片; (b) 2 D等效剪应变场(箭头表示冲击方向)

    Figure  5.  Strain distribution of trapezoid sample Ⅰ under aluminum transmission bar (impact velocity of 16.21 m/s): (a) High speed images; (b) 2 D equivalent shear strain field. (The arrow denotes the impact direction.)

    图  6  沿冲击方向的平均等效剪应变分布 (a) 梯台试样Ⅰ在冲击速度13.3 m/s透射杆为钢杆的应变分布; (b) 梯台试样Ⅰ在冲击速度16.21 m/s透射杆为铝杆的应变分布

    Figure  6.  Average equivalent shear strain distribution along impact direction: (a) Trapezoid sample Ⅰ under steel transmission bar (impact velocity of 13.3 m/s); (b) trapezoid sample Ⅰ under aluminum transmission bar (impact velocity of 16.21 m/s).

    图  7  不同时刻试样内的应力分布

    Figure  7.  Stress distribution in sample at different time.

    图  8  破碎时试样内的广义扩散阻力分布

    Figure  8.  Generalized diffusion resistance force distribution in the sample during breakage.

    表  1  试样两端应力差统计

    Table  1.   Statistics of stress differences between two ends of sample.

    试样透射杆应变率/s-1应力差异
    立方体钢杆600<2.5%
    梯台Ⅰ50020.4%—22.1%
    梯台Ⅱ60033.8%—35.2%
    梯台Ⅰ铝杆60023.3%—25.5%
    梯台Ⅱ75037.2%—43.1%
    下载: 导出CSV
  • [1] 徐松林, 单俊芳, 王鹏飞. 现代应用物理,2020,11:30101. doi: 10.12061/j.issn.2095-6223.2020.030101

    Xu S L, Shan J F, Wang P F. Mod. Appl. Phys., 2020, 11: 30101. (in Chinese) doi: 10.12061/j.issn.2095-6223.2020.030101
    [2] 马棋棋, 熊迅, 郑宇轩, 周风华. 高压物理学报,2019,33:044101. doi: 10.11858/gywlxb.20190719

    Ma Q Q, Xiong X, Zheng Y X, Zhou F H. Chin. J. High Pressure Phys., 2019, 33: 044101. (in Chinese) doi: 10.11858/gywlxb.20190719
    [3] Huang J, Xu S, Hu S. Rock Mech. Rock Eng., 2013, 47: 1727.
    [4] 陈兴, 马刚, 周伟, 赖国伟, 来志强. 物理学报,2018,67:146102. doi: 10.7498/aps.67.20180276

    Chen X, Ma G, Zhou W, Lai G W, Lai Z Q. Acta Phys. Sin., 2018, 67: 146102. (in Chinese) doi: 10.7498/aps.67.20180276
    [5] Jiang H B, Xu S L, Shan J F, Wang D R, Liu Y G, Zhou L J, Wang P F. Powder Technol., 2019, 353: 359. doi: 10.1016/j.powtec.2019.05.028
    [6] Shan J, Xu S, Liu Y G, Zhou L J, Wang P F. Powder Technol., 2018, 330: 317. doi: 10.1016/j.powtec.2018.02.009
    [7] Potapov A V, Campbell C S. Powder Technol., 1997, 93: 13. doi: 10.1016/S0032-5910(97)03242-7
    [8] Rasorenov S V, Kanel G I, Fortov V E, Abasehov M M. Int. J. High Pressure Res., 1991, 6: 225. doi: 10.1080/08957959108202508
    [9] Espinosa H D. Mech. Mater., 1998, 29: 219. doi: 10.1016/S0167-6636(98)00016-7
    [10] 冯晓伟, 李俊承, 王洪波, 常敬臻. 物理学报,2016,65:166201. doi: 10.7498/aps.65.166201

    Feng X W, Li J C, Wang H B, Chang J Z. Acta Phys. Sin., 2016, 65: 166201. (in Chinese) doi: 10.7498/aps.65.166201
    [11] Anderson Jr C E, Bigger R P, Weiss C E. Int. J. Appl. Glass Sci., 2014, 5: 374. doi: 10.1111/ijag.12091
    [12] Huang J Y, Li Y, Liu Q C, Zhou X M, Liu L W, Liu C L, Zhu H M, Luo S N. Phys. Rev. B, 2015, 92: 144101. doi: 10.1103/PhysRevB.92.144101
    [13] Sheikh M Z, Atif M, Li Y L, Zhou F H, Raza M A, Dar U A, Gao G Z, Wang Y M. Constr. Build. Mater., 2021, 288: 123088. doi: 10.1016/j.conbuildmat.2021.123088
    [14] 易洪昇, 徐松林, 单俊芳, 张鸣. 爆炸与冲击,2017,37:913. doi: 10.11883/1001-1455(2017)05-0913-10

    Yi H S, Xu S L, Shan J F, Zhang M. Explosion and Shock Waves, 2017, 37: 913. (in Chinese) doi: 10.11883/1001-1455(2017)05-0913-10
    [15] 宋一平, 苗春贺, 单俊芳, 王鹏飞, 徐松林. 爆炸与冲击,2022,42:073103. doi: 10.11883/bzycj-2021-0244

    Song Y P, Miao C H, Shan J F, Wang P F, Xu S L. Explosion and Shock Waves, 2022, 42: 073103. (in Chinese) doi: 10.11883/bzycj-2021-0244
    [16] 方继松, 王珠, 熊迅, 郑宇轩, 周凤华. 高压物理学报,2020,34:014101. doi: 10.11858/gywlxb.20190764

    Fang J S, Wang Z, Xiong X, Zheng Y X, Zhou F H. Chin. J. High Pressure Phys., 2020, 34: 014101. (in Chinese) doi: 10.11858/gywlxb.20190764
    [17] Miao C H, Xu S L, Song Y P, Xie Y S, Yuan L Z, Wang P F. Powder Technol., 2022, 397: 117081. doi: 10.1016/j.powtec.2021.117081
    [18] Liu D, Shen L, Guillard F, Einav I. Int. J. Impact Eng., 2016, 93: 222. doi: 10.1016/j.ijimpeng.2016.03.005
    [19] 简世豪, 苗春贺, 张磊, 单俊芳, 王鹏飞, 徐松林. 高压物理学报,2021,35:024202. doi: 10.11858/gywlxb.20200629

    Jian S H, Miao C H, Zhang Lei, Shan J F, Wang P F, Xu S L. Chin. J. High Pressure Phys., 2021, 35: 024202. (in Chinese) doi: 10.11858/gywlxb.20200629
    [20] Xing H Z, Zhang Q B, Braithwaite C H, Pan B, Zhao J. Rock Mech. Rock Eng., 2017, 50: 1611. doi: 10.1007/s00603-016-1164-0
    [21] Zhou L, Xu S, Shan J, Liu Y, Wang P. Mech. Mater., 2018, 123: 1. doi: 10.1016/j.mechmat.2018.04.013
    [22] Grady D. 2017 Phys. Shock Impact (Vol. 1) (London: IOP Publishing) pp2-57—2-68
    [23] Mott N F. Proc. R. Soc. London,Ser. A, 1947, 189: 300. doi: 10.1098/rspa.1947.0042
    [24] Feng R. J. Appl. Phys., 2000, 87: 1693. doi: 10.1063/1.372079
    [25] 刘占芳, 常敬臻, 姚国文, 张凯, 李建鹏. 力学学报,2006,38:626. doi: 10.3321/j.issn:0459-1879.2006.05.008

    Liu Z F, Chang J Z, Yao G W, Zhang K, Li J P. Chin. J. Theor. Appl. Mech., 2006, 38: 626. (in Chinese) doi: 10.3321/j.issn:0459-1879.2006.05.008
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  19
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-07-05
  • 网络出版日期:  2023-06-06

目录

    /

    返回文章
    返回