QC-LDPC construction free of small size elementary trapping sets based on multiplicative subgroups of a finite field
doi: 10.3934/amc.2020062
-
Abstract: Trapping sets significantly influence the performance of low-density parity-check codes. An $ (a, b) $ elementary trapping set (ETS) causes high decoding failure rate and exert a strong influence on the error floor of the code, where $ a $ and $ b $ denote the size and the number of unsatisfied check-nodes in the ETS, respectively. The smallest size of an ETS in $ (3, n) $-regular LDPC codes with girth 6 is 4. In this paper, we provide sufficient conditions to construct fully connected $ (3, n) $-regular algebraic-based QC-LDPC codes with girth 6 whose Tanner graphs are free of $ (a, b) $ ETSs with $ a\leq5 $ and $ b\leq2 $. We apply these sufficient conditions to the exponent matrix of a new algebraic-based QC-LDPC code with girth at least 6. As a result, we obtain the maximum size of a submatrix of the exponent matrix which satisfies the sufficient conditions and yields a Tanner graph free of those ETSs with small size. Some algebraic-based QC-LDPC code constructions with girth 6 in the literature are special cases of our construction. Our experimental results show that removing ETSs with small size contribute to have better performance curves in the error floor region.
-
Key words:
- Algebraic-based QC-LDPC codes /
- girth /
- Tanner graph /
- elementary trapping set /
- edge coloring
-
Table 1. Row indices $ (i, j, k);\ i, j, k\in\{0, 1, 2, 3, 4\} $ and column indices $ (c_1, c_2, c_3, c_4);\ c_i\in\{0, 1, \dots, 16\} $ of $ {\mathbf B} $ in (10) to construct non-isomorphic $ (3, 4) $-regular QC-LDPC codes with girth 6 and free of $ (a, b) $ ETSs with $ a\leq5 $ and $ b\leq2 $
$ row\ indices $ $ column\ indices $ $ (1, 2, 3) $ $ (1, 2, 7, 10), \ (1, 3, 4, 13), \ (1, 3, 4, 14), \ (1, 3, 13, 14) $ $ (1, 2, 3) $ $ (1, 4, 5, 16), \ (1, 5, 8, 16), \ (1, 5, 10, 16), \ (1, 5, 12, 15) $ -
[1] Amirzade F. Alishahi M. Sadeghi M.-R. An algebraic construction of QC-LDPC codes based on powers of primitive elements in a finite field and free of small ETSs 2019 6 129 140 [2] Amirzade F. Sadeghi M.-R. Lower bounds on the lifting degree of QC-LDPC codes by difference matrices 2018 6 23688 23700 10.1109/ACCESS.2018.2830406 [3] Amirzade F. Sadeghi M.-R. Analytical lower bounds on the size of elementary trapping sets of variable-regular LDPC codes with any girth and irregular ones with girth 8 2018 66 2313 2321 10.1109/TCOMM.2018.2805834 [4] F. Amirzade and M.-R. Sadeghi, Efficient search of QC-LDPC codes with girths 6 and 8 and free of small elementary trapping sets with small size, arXiv: 1803.08141. [5] M. Battaglioni, A. Tasdighi, M. Baldi, M. H. Tadayon and F. Chiaraluce, Compact QC-LDPC block and SC-LDPC convolutional codes for low-latency communications, 2018 IEEE 29th Ann. Int. Symp. PIMRC, (2018), 1–5. [6] Bocharova I. E. Hug F. Johannesson R. Kudryashov B. D. Satyukov R. V. Searching for voltage graph-based LDPC tailbiting codes with large girth 2012 58 2265 2279 10.1109/TIT.2011.2176717 MR2951330 [7] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976. [8] Diao Q. J. Huang Q. Lin S. Abdel-Ghaffar K. A matrix-theoretic approach for analyzing quasi-cyclic low-density parity-check codes 2012 58 4030 4048 10.1109/TIT.2012.2184834 MR2924422 [9] Q. J. Diao, Q. Huang, S. Lin and K. Abdel-Ghaffar, A transform approach for analyzing and constructing quasi-cyclic low-density parity-check codes, IEEE Trans. Inf. Theory Appl. Workshop, San Diego, CA, USA, (2011), 1–8. [10] M. Diouf, D. Declercq, S. Ouya and B. Vasic, A PEG-like LDPC code design avoiding short trapping sets, IEEE Int. Symp. Inf. Theory (ISIT), (2015), 1079–1083. [11] Fossorier M. P. C. Quasi-cyclic low-density parity-check codes from circulant permutation matrices 2004 50 1788 1793 10.1109/TIT.2004.831841 MR2096847 [12] Q. Huang, Q. Diao, S. Lin and K. Abdel-Ghaffar, Trapping sets of structured LDPC codes, 2011 IEEE Int. Symp. Inf. Theory, (2011), 1086–1090. [13] Li J. Liu K. Lin S. Abdel-Ghaffar K. Algebraic quasi-cyclic LDPC codes: Construction, low error-floor, large girth and a reduced-complexity decoding scheme 2014 62 2626 2637 10.1109/TCOMM.2014.2339329 [14] J. Li, K. Liu, S. Lin and K. Abdel-Ghaffar, Quasi-cyclic LDPC codes on two arbitrary sets of a finite field, IEEE Int. Symp. Inf. Theory, (2014), 2454–2458. [15] Li J. Liu K. Lin S. Abdel-Ghaffar K. A matrix-theoretic approach to the construction of non-binary quasi-cyclic LDPC codes 2015 63 1057 1068 [16] K. Liu, Q. Huang, S. Lin and K. Abdel-Ghaffar, Quasi-cyclic LDPC codes: Construction and rank analysis of their parity-check matrices, IEEE Inf. Theory and Appl. Workshop, (2012), 227–233. [17] Nguyen D. V. Chilappagari S. K. Marcellin N. W. Vasic B. On the construction of structured LDPC codes free of small trapping sets 2012 58 2280 2302 10.1109/TIT.2011.2173733 MR2951331 [18] O'Sullivan M. E. Algebraic construction of sparse matrices with large girth 2006 52 718 727 10.1109/TIT.2005.862120 MR2236186 [19] Sadeghi M.-R. Optimal search for girth-8 quasi cyclic and spatially coupled multiple-edge LDPC codes 2019 23 1466 1469 10.1109/LCOMM.2019.2924892 [20] Sadeghi M.-R. Amirzade F. Analytical lower bound on the lifting degree of multiple-edge QC-LDPC codes with girth 6 2018 22 1528 1531 10.1109/LCOMM.2018.2841873 [21] Sakzad A. Sadeghi M.-R. Panario D. Codes with girth 8 Tanner graph representation 2010 57 71 81 10.1007/s10623-009-9349-0 MR2669669 [22] Song S. Zhou B. Lin S. Abdel-Ghaffar K. A unified approach to the construction of binary and nonbinary Quasi-cyclic LDPC codes based on finite field 2009 57 84 93 [23] H Tadayon M. Alireza T. Massino B. Efficient search of compact QC-LDPC and SC-LDPC convolutional codes with large girth 2018 22 1156 1159 10.1109/LCOMM.2018.2827959 [24] Tao X. F. Li Y. F. Liu Y. H. Hu Z. Q. On the construction of LDPC codes free of small trapping sets by controlling cycles 2018 22 9 12 10.1109/LCOMM.2017.2679707 [25] Tasdighi A. Banihashemi A. H. Sadeghi M. R. Efficient search of girth-optimal QC-LDPC codes 2016 62 1552 1564 10.1109/TIT.2016.2523979 MR3480065 [26] Wang J. D. Dolecek L. Wesel R. D. The cycle consistency matrix approach to absorbing sets in separable circulant-based LDPC codes 2013 59 2293 2314 10.1109/TIT.2012.2235122 MR3043798 [27] Y. G. Wang, J. S. Yedidia and S. C. Draper, Construction of high-girth QC-LDPC codes, 2008 5th Int. Symp. Turbo Codes and related Topics, (2008), 180–185. [28] Zhang G. Sun R. Wang X. Explicit construction of girth-eight QC-LDPC codes and its application in CRT methods 2012 33 171 176 [29] Zhang L. Lin S. Abdel Ghaffar K. Ding Z. Zhou B. Quasi-Cyclic LDPC codes on cyclic subgroups of finite fields 2011 59 2330 2336 10.1109/TCOMM.2011.060911.100208 [30] L. Zhang, S. Lin, K. Abdel Ghaffar and B. Zhou, Circulant arrays: Rank analysis and construction of Quasi-Cyclic LDPC codes, IEEE Int. Symp. Inf. Theory (ISIT), (2010), 814–818.