留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Solution-processed highly adhesive graphene coatings for corrosion inhibition of metals

Son Gi-Cheol Hwang Deuk-Kyu Jang Jaewon Chee Sang-Soo Cho Kyusang Myoung Jae-Min Ham Moon-Ho

,,,,,,,,,,2021. . 震灾防御技术, 1(1):18−23. doi:10.1009/s12274-020-2948-91-24 doi: 10.1009/s12274-020-2948-91-24
Citation: ,,,,,,,,,,2021. . 震灾防御技术, 1(1):18−23. doi:10.1009/s12274-020-2948-91-24 doi: 10.1009/s12274-020-2948-91-24

Solution-processed highly adhesive graphene coatings for corrosion inhibition of metals

doi: 10.1009/s12274-020-2948-91-24
Funds: This work was supported by the 2nd phase of the Fundamental R&D Programs for Core Technology of Materials funded by Ministry of Trade, Industry and Energy (MOTIE) (2015-2016), Future Semiconductor Device Technology Development Program (No. 10044868) funded by Ministry of Trade, Industry and Energy (MOTIE) and Korea Semiconductor Research Consortium (KSRC), Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (No. 2017M3D1A1040828), Nano·Material Technology Development Program through the National Research Foundation of Korea(NRF) funded by Ministry of Science and ICT (No. 2017M3A7B4052798), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2015R1D1A1A01058982), and GIST Research Institute (GRI) grant funded by the GIST.
More Information
  • Figure  Figure 1.  (a) Schematic of the preparation process for GO- and RGO-coated metal plates by spray-coating. FESEM images of (b) Cu and (c) as-coated GO/Cu plates.

    Figure  Figure 2.  (a) Photographs of Cu, as-coated GO/Cu, 90 ℃-annealed GO/Cu, 120 ℃-annealed GO/Cu, and RGO/Cu plates before and after immersion in salt solutions for 96 h (scale bar: 5 mm). (b) XRD patterns of Cu, as-coated GO/Cu, 90 ℃-annealed GO/Cu, 120 ℃-annealed GO/Cu, and RGO/Cu plates after immersion in salt solutions for 96 h, together with the XRD pattern of the pristine Cu plate for comparison.

    Figure  Figure 3.  Water contact angles on the surfaces of (a) pristine Cu, (b) as-coated GO/Cu, (c) 90 ℃-annealed GO/Cu, (d) 120 ℃-annealed GO/Cu, and (e) RGO/Cu plates. (f) Comparison of water contact angles for all the samples.

    Figure  Figure 4.  Photographs of as-coated GO/Cu, 90 ℃-annealed GO/Cu, 120 ℃- annealed GO/Cu, RGO/Cu, and 120 ℃-annealed RGO/Cu plates before and after cross-cut tests (scale bar: 5 mm).

    Figure  Figure 5.  (a) C 1s and (b) Cu 2p XPS spectra of as-coated GO/Cu, 90 ℃- annealed GO/Cu, 120 ℃-annealed GO/Cu, and RGO/Cu plates. C 1s and Cu 2p XPS depth profile spectra of (c) as-coated and (d) 120 ℃-annealed GO/Cu plates.

    Figure  Figure 6.  Schematics for the lamellar structures of graphene sheets coated on Cu plates, showing oxygen-based functional groups and Cu-O bonds formed upon post-annealing treatment: (a) as-coated GO/Cu, (b) 90 ℃-annealed GO/Cu, and (c) 120 ℃-annealed GO/Cu plates. The 120 ℃-annealed GO/Cu plate creates a RGO/GO/Cu structure by partial reduction of the GO layer, leading to superior corrosion resistance and adhesion strength.

    Figure  Figure 7.  Cross-sectional TEM images and EDS line-scan profiles of carbon and oxygen in (a) as-coated GO/Cu, (b) 90 ℃-annealed GO/Cu, (c) 120 ℃-annealed GO/Cu, and (d) RGO/Cu plates. (e) Cross-sectional HRTEM images of GO and RGO regions.

  • [1] Gray, J.Protective coatings on magnesium and its alloys—A critical reviewJ. Alloy. Compd., 3362002. :88 − 113. doi: 10.1016/S0925-8388(01)01899-0
    [2] Tallman, D.Electroactive conducting polymers for corrosion controlJ. Solid State Electrochem., 62002. :73 − 84. doi: 10.1007/s100080100212
    [3] Araujo, W.Undoped polyaniline anticorrosive propertiesElectrochim. Acta, 462001. :1307 − 1312. doi: 10.1016/S0013-4686(00)00726-X
    [4] Novoselov, K.Electric field effect in atomically thin carbon filmsScience, 3062004. :666 − 669. doi: 10.1126/science.1102896
    [5] Novoselov, K.A roadmap for grapheneNature, 4902012. :192 − 200. doi: 10.1038/nature11458
    [6] Vadukumpully, S.Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stabilityCarbon, 492011. :198 − 205. doi: 10.1016/j.carbon.2010.09.004
    [7] Chen, S.Oxidation resistance of graphene-coated Cu and Cu/Ni alloyACS Nano, 52011. :1321 − 1327. doi: 10.1021/nn103028d
    [8] Aneja, K.Graphene based anticorrosive coatings for Cr(VI) replacementNanoscale, 72015. :17879 − 17888. doi: 10.1039/C5NR04702A
    [9] Prasai, D.Graphene: Corrosion-inhibiting coatingACS Nano, 62012. :1102 − 1108. doi: 10.1021/nn203507y
    [10] Brownson, D.The electrochemistry of CVD graphene: Progress and prospectsPhys. Chem. Chem. Phys., 142012. :8264 − 8281. doi: 10.1039/c2cp40225d
    [11] Kim, K.Ripping graphene: Preferred directionsNano Lett., 122012. :293 − 297. doi: 10.1021/nl203547z
    [12] Lin, Y.Wafer-scale graphene integrated circuitScience, 3322011. :1294 − 1297. doi: 10.1126/science.1204428
    [13] Li, D.Processable aqueous dispersions of graphene nanosheetsNat. Nanotechnol., 32008. :101 − 105. doi: 10.1038/nnano.2007.451
    [14] Kang, D.Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayersACS Nano, 62012. :7763 − 7769. doi: 10.1021/nn3017316
    [15] Lipomi, D.Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubesNat. Nanotechnol., 62011. :788 − 792. doi: 10.1038/nnano.2011.184
    [16] Krantz, J.Spray-coated silver nanowires as top electrode layer in semitransparent P3HT: PCBM-based organic solar cell devicesAdv. Funct. Mater., 232013. :1711 − 1717. doi: 10.1002/adfm.201202523
    [17] Hummers, W.Preparation of graphitic oxideJ. Am. Chem. Soc., 801958. :1339. doi: 10.1021/ja01539a017
    [18] Jang, K.Sub-10-nm Co 3O 4 nanoparticles/ graphene composites as high-performance anodes for lithium storageChem. Eng. J., 3092017. :15 − 21. doi: 10.1016/j.cej.2016.10.009
    [19] Pei, S.Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acidsCarbon, 482010. :4466 − 4474. doi: 10.1016/j.carbon.2010.08.006
    [20] Mattevi, C.Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin filmsAdv. Funct. Mater., 192009. :2577 − 2583. doi: 10.1002/adfm.200900166
    [21] Gilje, S.A chemical route to graphene for device applicationsNano Lett., 72007. :3394 − 3398. doi: 10.1021/nl0717715
    [22] Lin, L.Formation of tunable graphene oxide coating with high adhesionPhys. Chem. Chem. Phys., 182016. :5086 − 5090. doi: 10.1039/C5CP06906H
    [23] Khusnun, N.Interaction between copper and carbon nanotubes triggers their mutual role in the enhanced photodegradation of p-chloroanilinePhys. Chem. Chem. Phys., 182016. :12323 − 12331. doi: 10.1039/C5CP08068A
    [24] Wang, G.Facile synthesis and characterization of graphene nanosheets J. Phys. Chem. C, 1122008. :8192 − 8195. doi: 10.1021/jp710931h
  • 加载中
图(7)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  51
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-04
  • 录用日期:  2018-03-18
  • 修回日期:  2018-03-04
  • 网络出版日期:  2022-05-23

目录

    /

    返回文章
    返回