Solution-processed highly adhesive graphene coatings for corrosion inhibition of metals
doi: 10.1009/s12274-020-2948-91-24
-
Abstract:
The corrosion of metals can be induced by different environmental and operational conditions, and protecting metals from corrosion is a serious concern in many applications. The development of new materials and/or technologies to improve the efficiency of anti-corrosion coatings has attracted renewed interest. In this study, we develop a protective coating composed of a bilayer structure of reduced graphene oxide (RGO)/graphene oxide (GO) applied to Cu plates by spray-coating and subsequent annealing. The annealing of the GO/Cu plates at 120 ℃ produces a bilayer structure of RGO/GO by the partial reduction of the spray-coated GO layer. This induces superior corrosion resistance and adhesion strength compared to those of GO/Cu and RGO/Cu plates because of the hydrophobic nature of the RGO surface exposed to the surroundings and the formation of Cu-O bonds with the O-based functional groups of GO. This approach provides a viable and scalable route for using graphene coatings to protect metal surfaces from corrosion.
-
Key words:
- graphene /
- metal /
- surface coating /
- corrosion /
- solution process
-
Figure Figure 2. (a) Photographs of Cu, as-coated GO/Cu, 90 ℃-annealed GO/Cu, 120 ℃-annealed GO/Cu, and RGO/Cu plates before and after immersion in salt solutions for 96 h (scale bar: 5 mm). (b) XRD patterns of Cu, as-coated GO/Cu, 90 ℃-annealed GO/Cu, 120 ℃-annealed GO/Cu, and RGO/Cu plates after immersion in salt solutions for 96 h, together with the XRD pattern of the pristine Cu plate for comparison.
Figure Figure 6. Schematics for the lamellar structures of graphene sheets coated on Cu plates, showing oxygen-based functional groups and Cu-O bonds formed upon post-annealing treatment: (a) as-coated GO/Cu, (b) 90 ℃-annealed GO/Cu, and (c) 120 ℃-annealed GO/Cu plates. The 120 ℃-annealed GO/Cu plate creates a RGO/GO/Cu structure by partial reduction of the GO layer, leading to superior corrosion resistance and adhesion strength.
-
[1] Gray, J.Protective coatings on magnesium and its alloys—A critical reviewJ. Alloy. Compd., 3362002. :88 − 113. doi: 10.1016/S0925-8388(01)01899-0 [2] Tallman, D.Electroactive conducting polymers for corrosion controlJ. Solid State Electrochem., 62002. :73 − 84. doi: 10.1007/s100080100212 [3] Araujo, W.Undoped polyaniline anticorrosive propertiesElectrochim. Acta, 462001. :1307 − 1312. doi: 10.1016/S0013-4686(00)00726-X [4] Novoselov, K.Electric field effect in atomically thin carbon filmsScience, 3062004. :666 − 669. doi: 10.1126/science.1102896 [5] Novoselov, K.A roadmap for grapheneNature, 4902012. :192 − 200. doi: 10.1038/nature11458 [6] Vadukumpully, S.Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stabilityCarbon, 492011. :198 − 205. doi: 10.1016/j.carbon.2010.09.004 [7] Chen, S.Oxidation resistance of graphene-coated Cu and Cu/Ni alloyACS Nano, 52011. :1321 − 1327. doi: 10.1021/nn103028d [8] Aneja, K.Graphene based anticorrosive coatings for Cr(VI) replacementNanoscale, 72015. :17879 − 17888. doi: 10.1039/C5NR04702A [9] Prasai, D.Graphene: Corrosion-inhibiting coatingACS Nano, 62012. :1102 − 1108. doi: 10.1021/nn203507y [10] Brownson, D.The electrochemistry of CVD graphene: Progress and prospectsPhys. Chem. Chem. Phys., 142012. :8264 − 8281. doi: 10.1039/c2cp40225d [11] Kim, K.Ripping graphene: Preferred directionsNano Lett., 122012. :293 − 297. doi: 10.1021/nl203547z [12] Lin, Y.Wafer-scale graphene integrated circuitScience, 3322011. :1294 − 1297. doi: 10.1126/science.1204428 [13] Li, D.Processable aqueous dispersions of graphene nanosheetsNat. Nanotechnol., 32008. :101 − 105. doi: 10.1038/nnano.2007.451 [14] Kang, D.Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayersACS Nano, 62012. :7763 − 7769. doi: 10.1021/nn3017316 [15] Lipomi, D.Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubesNat. Nanotechnol., 62011. :788 − 792. doi: 10.1038/nnano.2011.184 [16] Krantz, J.Spray-coated silver nanowires as top electrode layer in semitransparent P3HT: PCBM-based organic solar cell devicesAdv. Funct. Mater., 232013. :1711 − 1717. doi: 10.1002/adfm.201202523 [17] Hummers, W.Preparation of graphitic oxideJ. Am. Chem. Soc., 801958. :1339. doi: 10.1021/ja01539a017 [18] Jang, K.Sub-10-nm Co 3O 4 nanoparticles/ graphene composites as high-performance anodes for lithium storageChem. Eng. J., 3092017. :15 − 21. doi: 10.1016/j.cej.2016.10.009 [19] Pei, S.Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acidsCarbon, 482010. :4466 − 4474. doi: 10.1016/j.carbon.2010.08.006 [20] Mattevi, C.Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin filmsAdv. Funct. Mater., 192009. :2577 − 2583. doi: 10.1002/adfm.200900166 [21] Gilje, S.A chemical route to graphene for device applicationsNano Lett., 72007. :3394 − 3398. doi: 10.1021/nl0717715 [22] Lin, L.Formation of tunable graphene oxide coating with high adhesionPhys. Chem. Chem. Phys., 182016. :5086 − 5090. doi: 10.1039/C5CP06906H [23] Khusnun, N.Interaction between copper and carbon nanotubes triggers their mutual role in the enhanced photodegradation of p-chloroanilinePhys. Chem. Chem. Phys., 182016. :12323 − 12331. doi: 10.1039/C5CP08068A [24] Wang, G.Facile synthesis and characterization of graphene nanosheets J. Phys. Chem. C, 1122008. :8192 − 8195. doi: 10.1021/jp710931h