留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非局域颗粒复合介质的相完美吸收效应

陈志鹏 於文静 高雷

陈志鹏,於文静,高雷,2020. 非局域颗粒复合介质的相完美吸收效应. 震灾防御技术,4(4):14−18. doi:
引用本文: 陈志鹏,於文静,高雷,2020. 非局域颗粒复合介质的相完美吸收效应. 震灾防御技术,4(4):14−18. doi:
Chen Zhi-Peng, Yu Wen-Jing, . Coherent perfect absorption in nonlocal particle composite medium[J]. Rhhz Test.
Citation: Chen Zhi-Peng, Yu Wen-Jing, . Coherent perfect absorption in nonlocal particle composite medium[J]. Rhhz Test.

非局域颗粒复合介质的相完美吸收效应

基金项目: 国家自然科学基金(批准号: 11774252)、江苏省自然科学基金(批准号: BK20161210)、
江苏省青蓝工程、“333”工程(批准号: BRA2015353)和江苏省高校优势学科建设工程资助的课题
详细信息
    作者简介:

    陈志鹏:xhchenzp@126.com

    通讯作者:

    E-mail: leigao@suda.edu.cn

  • 中图分类号: 11.10.Lm, 78.20.Ci, 88.30.mj, 42.25.Bs

Coherent perfect absorption in nonlocal particle composite medium

Funds: Project supported by National Natural Science Foundation of China (Grant No. 11774252), the National Science of Jiangsu Province (Grant No. BK20161210), the Qing Lan project of Jiangsu Province, “333” project (Grant No. BRA2015353), and PAPD of Jiangsu Higher Education Institutions, China
More Information
  • 摘要: 研究了两束相干光以相同的入射角从左、右两侧分别入射到金-二氧化硅复合介质板时, 在不同的体系参数下该复合材料体系发生相干完美吸收的情形. 运用有效媒质理论推导出了复合介质的有效介电常数以及有效磁导率; 在得到有效电磁参数的基础上进一步推导得到平面波入射复合介质板时的反/透射系数. 通过比较分析非局域和局域情况下颗粒复合介质的相干完美吸收现象, 发现当颗粒尺寸很小时非局域效应的影响会导致复合介质产生相干完美吸收的入射光的频率范围显著变宽. 在进一步的解析计算中, 通过调节复合介质板的厚度、入射光波长、金属颗粒体积分数等参数得到了不同情况下产生的相干完美吸收现象, 并由此分析非局域情形下对于相干完美吸收现象的调控.

     

  • 图  1  相干完美吸收的示意图

    Figure  1.  Schematic diagram of coherent perfect absorption.

    图  2  有效媒质理论模型, 红色为金属颗粒, 蓝色为基底介质, 灰色为有效介质

    Figure  2.  The model of effective medium. The red part is metal particles, the blue part is base medium, and the grey part is effective medium.

    图  3  (a1) f = 0.1, (b1) f = 0.01, (c1) f = 0.0012, 时有效介电常数的实部; (a2) f = 0.1, (b2) f = 0.01, (c2) f = 0.0012时有效介电常数的虚部随$\lambda $的变化; 此时d为5 ${\text{μ}}$m, a为2 nm

    Figure  3.  (a1), (b1) and (c1) are the real parts of effective permittivity as function of $\lambda $, for (a1) f = 0.1, (b1) f = 0.01, (c1) f = 0.0012; (a2), (b2), (c2) are the imaginary parts of effective permittivity as function of $\lambda_1 $, for (a2) f = 0.1, (b2) f = 0.01, (c2) f = 0.0012. d = 5 ${\text{μ}}$m, a = 2 nm.

    图  4  (a1), (b1), (c1) a = 2, 5, 10 nm时, 局域效应下${\log _{10}}{\left| {{r_1} + {t_2}} \right|^3}$$\lambda $f的函数关系; (a2), (b2), (c2)对应情况下考虑非局域效应时的结果; 入射角$\theta$ = 45°

    Figure  4.  ${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$ as functions of $\lambda $ and f with different metallic nanoparticle radius (a) a = 2 nm, (b) a = 5 nm, (c): (a1), (b1) and (c1) are within the local description and (a2), (b2)and (c2) are within the nonlocal description. The incident angle is $\theta $ = 45°.

    图  5  (a) d = 2 ${\text{μ}}$m, (b) d = 5 ${\text{μ}}$m, (c)、d = 10 ${\text{μ}}$m时散射光强对数${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$$\lambda $f的函数关系图, 此时入射角$\theta $为45°

    Figure  5.  ${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$ as functions of $\lambda $ and f with thickness of medium plate (a) d = 2 ${\text{μ}}$m, (b) d = 5 ${\text{μ}}$m, (c) d = 10 ${\text{μ}}$m. The incident angle is $\theta $ = 45°.

    图  6  a = 2 nm, d = 5 ${\text{μ}}$m, ${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$$\lambda $f的函数关系

    Figure  6.  Color map of ${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$ as functions of $\lambda $ and f for a = 2 nm, d = 5 ${\text{μ}}$m.

    图  7  f = 0.0012, $\theta $ = 45°时, (a) $\left| {r_1 } \right|$(蓝色)、$\left| {t_2 } \right|$(红色)与$\lambda $的函数关系, (b) $\left| {\Delta \phi } \right|/{\text{π}}$$\lambda $的函数关系, (c) ${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$$\lambda $的函数关系

    Figure  7.  For f = 0.0012, $\theta $ = 45°, (a) $\left| {r_1 } \right|$ (blue), $\left| {t_2 } \right|$ (red) as function of $\lambda $, (b) $\left| {\Delta \phi } \right|/{\text{π}}$ as function of $\lambda $, (c) ${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$as function of $\lambda $.

    图  8  $\lambda $ = 310 nm, $\theta = 45^\circ $时, (a) $\left| {r_1 } \right|$ (蓝色)、$\left| {t_2 } \right|$(红色)与f的函数关系; (b) $\left| {\Delta \phi } \right|/{\text{π}}$f的函数关系; (c) ${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$f的函数关系

    Figure  8.  For $\lambda $ = 310 nm, $\theta = 45^\circ $, (a) $\left| {r_1 } \right|$ (blue), $\left| {t_2 } \right|$ (red) as function of f, (b) $\left| {\Delta \phi } \right|/{\text{π}}$ as function of f, (c) ${\log _{10}}{\left| {{r_1} + {t_2}} \right|^2}$ as function of f.

  • [1] Dutta-Gupta S, Martin O J F, Gupta S D, Agarwal G S.Opt. Express,202012. :001330. doi: 10.1364/OE.20.001330
    [2] Sanjeeb D.Opt. Commun.,3562015. :515. doi: 10.1016/j.optcom.2015.08.012
    [3] Fu Y Y, Xu Y D, Chen H Y, Cummer S.New J. Phys.,202017. :013015.
    [4] Huang S, Xie Z W, Chen W D, Lei J Q, Wang F L, Liu K, Li L.Opt. Express,262018. :7066. doi: 10.1364/OE.26.007066
    [5] Müllers A, Santra B, Baals C, Jiang J, Benary J, Labouvie R, Zezyulin D A, Konotop V V, Ott H.Sci. Adv.,42018. :eaat6539. doi: 10.1126/sciadv.aat6539
    [6] Ruppin R.Phys. Rev. Lett.,311973. :1434. doi: 10.1103/PhysRevLett.31.1434
    [7] Fuchs R, Claro F.Phys. Rev. B,351987. :3722. doi: 10.1103/PhysRevB.35.3722
    [8] Rojas R, Claro F, Fuchs R.Phys. Rev. B,371988. :6799. doi: 10.1103/PhysRevB.37.6799
    [9] Chang R, Leung P T.Phys. Rev. B,732006. :125438. doi: 10.1103/PhysRevB.73.125438
    [10] Xie H Y, Chung H Y, Leung P T, Tsai D P.Phys. Rev. B,802009. :155448. doi: 10.1103/PhysRevB.80.155448
    [11] Huang Y, Gao L.Prog. Electromagn. Res.,1332013. :591. doi: 10.2528/PIER12091217
    [12] Huang Y, Bian X, Ni Y X, Miroshnichenko A E, Gao L.Phys. Rev. A,892014. :053824. doi: 10.1103/PhysRevA.89.053824
    [13] McMahon J M, Gray S K, Schatz G C.Nano Lett.,102010. :3473. doi: 10.1021/nl101606j
    [14] Toscano G, Raza S, Jauho A P, Mortensen N A, Wubs M.Opt. Express,202012. :4176. doi: 10.1364/OE.20.004176
    [15] Zuloaga J, Prodan E, Nordlander P.Nano Lett.,92009. :887. doi: 10.1021/nl803811g
    [16] Esteban R, Borisov A G, Nordlander P, Aizpurua J.Nat. Commun.,32012. :825. doi: 10.1038/ncomms1806
    [17] Dong T Y, Ma X K, Mittra R.Appl. Phys. Lett.,1012012. :233111. doi: 10.1063/1.4769348
    [18] Stell L, Zhang P, García-Vidal F J, Rubio A, García-Gonza?lez P.J. Phys. Chem. C,1172013. :8941. doi: 10.1021/jp401887y
    [19] Maxwell G J C.Philos. Trans. Roy. Soc. London,2051906. :237. doi: 10.1098/rsta.1906.0007
    [20] Bruggeman D A G.Ann. Phys. (Leipzig),241935. :636.
    [21] Huang Y, Gao L.J. Phys. Chem. C,1172013. :19203. doi: 10.1021/jp404490m
    [22] Dias E J C, Iranzo D A, Gonçalves P A D, Hajati Y, Bludov Y V, Jauho A P, Mortensen N A, Koppens F H L, Peres N M R.Phys. Rev. B,972018. :245405. doi: 10.1103/PhysRevB.97.245405
    [23] Agarwal G S, O'Neil S V.Phys. Rev. B,281983. :487.
    [24] Mcmahon J, Gray S, Schatz G.Phys. Rev. Lett.,1032009. :097403. doi: 10.1103/PhysRevLett.103.097403
    [25] Dasgupta B B, Fuchs R.Phys. Rev. B,241981. :554. doi: 10.1103/PhysRevB.24.554
  • 加载中
图(8)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  63
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-28
  • 修回日期:  2018-12-30
  • 网络出版日期:  2022-04-12

目录

    /

    返回文章
    返回